Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-03T13:14:08.915Z Has data issue: false hasContentIssue false

Investigations of TiO2 Nanoparticles Surface-Doped with Eu in Aqueous Fluids to High P-T Conditions

Published online by Cambridge University Press:  07 November 2013

Phillip A. McCart
Affiliation:
Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, MO 65897, USA
Laurel Farris
Affiliation:
Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, MO 65897, USA
Robert A. Mayanovic
Affiliation:
Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, MO 65897, USA
Hao Yan
Affiliation:
Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, MO 65897, USA
Get access

Abstract

A hydrothermal reactor has been used for surface doping of anatase TiO2 nanoparticles (∼ 13 nm across) with Eu3+ ions in aqueous fluids to 370 °C and ∼20 MPa. XRD and Raman measurements made both before and after hydrothermal treatment with Eu show that the anatase structure of the TiO2 nanoparticles (NPs) is preserved. SEM imaging, combined with XRD indicates that the size and overall morphology of the TiO2 nanoparticles is preserved subsequent to hydrothermal treatment in the presence of Eu. The photoluminescence occurring in the 400 to ∼700 nm range of the (as prepared) Eu surface-doped TiO2 NPs are red-shifted by ∼ 50 nm and reduced in intensity relative to the photoluminescence of TiO2 NPs.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A., and Honda, K.. Nature 37, 238 (1972).Google Scholar
Liu, H., Yu, L., Chen, W., and Li, Y.. Journal of Nanomaterials 13, 1121 (2012).Google Scholar
Liqiang, J., Xiaojun, S., Baifu, X., Baigi, W., Weimin, C., and Honggang, F.. Journal of Solid State Chemistry 177, 3375 (2004).CrossRefGoogle Scholar
Diamandescu, L., Vasiliu, F., Tarabasanu-Mihaila, D., Feder, M., Vlaicu, A., Teodorescu, C., Macovei, D., Enculescu, I., Parvulescu, V., and Vasile, E.. Materials Chemistry and Physics 112, 146 (2008).CrossRefGoogle Scholar
Xu, A.-W., Gao, Y., Liu, H.-Q., Journal of Catalysis 207, 151 (2002).CrossRefGoogle Scholar
Mayanovic, R.A., Yan, H., Anderson, A.J., Meredith, P.R., Bassett, W.A.. J. Phys. Chem. C 116, 2218 (2012).CrossRefGoogle Scholar
Yan, H., Mayanovic, R.A., Demster, J. and Anderson, Alan J.. J. Supercrit. Fluids 81, 175 (2013).CrossRefGoogle Scholar
Šćepanović, M.J., Grujić-Brojčin, M., Dohčević-Mitrović, Z.D., and Popović, Z.V.. Science of Sintering 41, 67 (2009).CrossRefGoogle Scholar
Jia, C., Xie, E., Zhao, J., Sun, Z., and Peng, A.. Journal of applied physics 100, 023529 (2006).CrossRefGoogle Scholar
Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F., Jiazhong, S., Solar Energy Materials and Solar Cells 90, 1773 (2006).CrossRefGoogle Scholar
Li, J., Wang, X., Watanabe, K., and Ishigaki, T.. The Journal of Physical Chemistry B 110, 1121 (2006).CrossRefGoogle Scholar
Wojcieszak, D., Kaczmarek, D., Domaradzki, J., and Mazur, M.. International Journal of Photoenergy 2013, 526140 (2013).CrossRefGoogle Scholar