Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T15:54:54.223Z Has data issue: false hasContentIssue false

Investigations of microwave and THz radiation losses in CVD diamond and chemically modified diamond

Published online by Cambridge University Press:  09 March 2011

T. A. Scherer
Affiliation:
Karlsruhe Institute of Technology KIT, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany, [email protected] (corresponding author); a: IMF-1, b: ANKA
D. Strauss
Affiliation:
Karlsruhe Institute of Technology KIT, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany, [email protected] (corresponding author); a: IMF-1, b: ANKA
A. Meier
Affiliation:
Karlsruhe Institute of Technology KIT, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany, [email protected] (corresponding author); a: IMF-1, b: ANKA
Y.-L. Mathis
Affiliation:
Karlsruhe Institute of Technology KIT, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany, [email protected] (corresponding author); a: IMF-1, b: ANKA
V. Judin
Affiliation:
Karlsruhe Institute of Technology KIT, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany, [email protected] (corresponding author); a: IMF-1, b: ANKA
W. Müller-Sebert
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik (IAF); D-79108 Freiburg, Germany
W. Smirnov
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik (IAF); D-79108 Freiburg, Germany
C. Nebel
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik (IAF); D-79108 Freiburg, Germany
Get access

Abstract

To counteract plasma instabilities like Neoclassical Tearing Modes (NTM-modes) in nuclear fusion reactors (JET, ITER, DEMO) high power microwaves are used for the Electron Cyclotron Resonance Heating (ECRH) and for the plasma current drive (CD). The foreseen power level for ITER (Cadarache, France) is Ptot = 24 MW at f = 170 GHz. Each transmission line is designed for a maximum of 2 MW power. The vacuum and tritium barrier to the ITER vacuum vessel is realized by a CVD diamond disk window assembly. Diamond has an extremely high thermal conductivity of about k = 2100 W/Km and a very low loss tangent of tan δ < 10-5 for this frequency and shows therefore a very small microwave absorption. The normalized absorbed power A=Pabs/P0 can be calculated as A = (f/c) • π • (1+εr‘) • tan δ • t (with the rule of thumb estimate: (f/c)=0.5 mm-1; π • (1+εr‘) = 20; tan δ =10-5; A=10-4 • t [mm]); i.e. each t = 1 mm thickness of diamond absorbs Pabs = 100 W of Po = 1 MW microwave power transmitted through the CVD diamond window with an effective tanδ of 10-5.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ashcroft, Mermin, “Solid State Physics”, Holt-Saunders Int. Ed., 1976.Google Scholar
[2] Garin, B. M., “Lower Loss Limits at Millimeter and Terahertz Ranges”, Conf. Digest of the 2004 Joint 29th Intern. Conf. on Infrared and Millimeter Waves and 12th Intern. Conf. on Terahertz Electronics, Karlsruhe, IEEE 2004, ISBN0-7803-8490-3, pp. 393-394.Google Scholar
[3] Jones, C. R., Gao, Y., “Temperature Studies of Dielectric Loss in Silicon Carbide”, Conf. Digest of the 35th IRMMW-THz Conf., Rome, IEEE 2010.Google Scholar
[4] Füner, M., Wild, C., Koidl, P., Appl. Phys. Lett. 72 (1998) 1149.Google Scholar
[5] Heidinger, R., Dammertz, G., Meier, A., Thumm, M. K., IEEE Trans. On Plasma Science, Vol. 30, No.3 (2002) 800.Google Scholar
[6] Danilov, I., Heidinger, R., “New approach for open resonator analysis for dielectric measurement at mm-wavelength”, J. Europ. Cer. Soc., 23 (2003), pp. 26232626.Google Scholar
[7] Garin, B. M., Kupnin, A. N., Parkhomenko, M. P., Chigryai, E. E., “Losses in low loss diamonds at mm range”, 23rd Int. Conf. Infrared and Millimeter Waves, Colchester, UK, Sept. 1998, pp. 230-231.Google Scholar
[8] Heidinger, R., Spörl, R., Thumm, M., Brandon, J. R., Sussmann, R. S., Dodge, C. N., “CVD diamond windows for high power gyrotrons”, 23rd Int. Conf. Infrared and Millimeter Waves, Colchester, UK, Sept. 1998, pp. 223-225.Google Scholar
[9] Parshin, V. V., Ralchenko, V., Konov, V., “Diamonds for high-power gyrotron window”,23rd Int. Conf. Infrared and Millimeter Waves, Colchester, UK, Sept. 1998, pp. 232-233.Google Scholar
[10] Vlasov, S. N., Koposova, E. V., Myasnikova, S. E., Parshin, V.V.The microwave absorption in diamond windows”, 25rd Int. Conf. Infrared and Millimeter Waves, Beijing, China, Sept. 2000, pp. 187-188.Google Scholar
[11] Heidinger, R., Dammertz, G., Meier, A., Thumm, M., “CVD Diamond Windows Studied With Low- and High-Power Millimeter Waves”, IEEE Trans. on Plasma Science, Vol. 30, No. 3, June 2002, pp. 800807.Google Scholar
[12] Schwab, R., Spörl, R., Burbach, J., Heidinger, R., Königer, F., “Millimeter-wave characterization of low loss dielectric materials using open resonators”, Proc. ITG Conf. Displays and Vacuum Electronics, ITG Rep. 150, Garmisch-Partenkirchen, Germany, 1998, pp. 363368.Google Scholar
[13] Schwab, R.: Ortsaufgelöste Untersuchung des Oberflächenwiderstandes von epitaktischen YBa2Cu3O7-δ-Dünnschichten mit Millimeterwellen. Forschungszentrum Karlsruhe, Wissenschaftliche Berichte FZKA 6331 (1999).Google Scholar
[14] Königer, F., Wiesbeck, W., Heidinger, R.: Meßsystem zur hochgenauen Bestimmung der komplexen Dielektrizitätszahl verschiedener Materialien im mm-Wellenbereich, 9th Conf. On Microwaves and Optronics (MIOP) (1988).Google Scholar
[15] Königer, F.: Measurement system for the precise determination of dielectrical properties in the mm-wave range based on hemispherical open resonators. Frequenz 43 (1989) 7-8.Google Scholar
[16] Heidinger, R., Burghartz, S., Katona, E., Link, G., Schulz, B.: Dielectric and thermophysical data base for cryogenically cooled EC wave transmission components. Kernforschungszentrum Karlsruhe, Primärbericht 31.04.03P01A (1992).Google Scholar
[17] Schwab, R.: Computation of the surface impedance in normal conductors. Forschungszentrum Karlsruhe, Wissenschaftliche Berichte FZKA 6023 (1997).Google Scholar
[18] Heidinger, R., Link, G.: Dielectric loss measurements between 25 – 300 K with a hemispherical Fabry-Perot resonator. Conf. Dig. 18th Int. Conf. on IR&MM Waves. SPIE 2104 (1993) 64-65.Google Scholar
[19] Kleen, W., Müller, R.: LASER-Verstärkung durch induzierte Emission. Springer Verlag, Berlin (1969).Google Scholar
[20] Schwab, R., Heidinger, R.: Open resonator studies for the determination of the surface resistance at mm-frequencies. Proc. 9th Conf. on Microwaves and Optronics (MIOP), (1997) 106-110.Google Scholar
[21] Scherer, T. A., Heidinger, R., Meier, A., Sakamoto, K., Takahashi, T., Kajiwara, K., Henderson, M., Chavan, R., „Design aspects and RF characterization of ITER-RF-CVD- Diamond windows‟, 15th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, EC-15, Yosemite (CA), USA, Proceedings, 09. March – 14. March 2008.Google Scholar
[22] Strauss, D., Heidinger, R., Hailfinger, G., Kleefeldt, K., Meier, A., Scherer, T., Spaeh, P., Vaccaro, A., „Plasma disruptions in ITER and the ECH upper port plug design‟, Conf. Abstracts, ICOPS 2008, 16-19 June 2008, Karlsruhe, 1C3, 2008 IEEE, p. 120.10.1109/PLASMA.2008.4590614Google Scholar
[23] Heidinger, R., Cirant, S., Chavan, R., De Baar, M., Elzendoorn, B., Gantenbein, G., Henderson, M., Kleefeldt, K., Leonhardt, W., Meier, A., Mellein, D., Saibene, G., Scherer, T., Spaeh, P., Strauss, D., Vaccaro, A., Zohm, H., (IMF-1 FZK, IFP, CNR, CRPP, EPFL, FOM, EFDA, MPI, IPP), “Design and testing of the ECH upper port plug for ITER”, Conf. Abstracts, ICOPS 2008, 16-19 June 2008, Karlsruhe, 1C4, 2008 IEEE, p. 121.10.1109/PLASMA.2008.4590615Google Scholar
[24] Parshin, V. V., Vikharev, A. L. (IAP Nizhny Novgorod), Heidinger, R., Meier, A., Scherer, T. (IMF-1 FZK), Garin, B. M. (IRE Moscow), Dutta, J. M. (DOPhysics NC Centr. Univ.), “Material aspects of high power microwave windows”, Conf. Abstracts, ICOPS 2008, 16-19 June 2008, Karlsruhe, 3B1, 2008 IEEE, p. 224.Google Scholar
[25] Scherer, T. A., Heidinger, R., Meier, A. (IMF-1 FZK), Takahashi, K., Kajiwara, K., Sakamoto, K.(JAEA, Naka, Japan), „Microwave testing of a CVD diamond torus window prototype for ITERConf. Abstracts, ICOPS 2008, 16-19 June 2008, Karlsruhe, 3B2, 2008 IEEE, p. 225.Google Scholar
[26] Heidinger, R., Henderson, M., Scherer, Th., Strauss, D., Takahashi, K., “Design and Prototype Testing of ITER ECH Upper Launcher Components”, 7th Internat. Workshop “Strong Microwaves: Sources and Applications”, Nizhny Novgorod, SMSA-2008, 27.07–02.08.2008.Google Scholar
[27] Scherer, T. A., Heidinger, R., Meier, A., Strauss, D., (FZK); Takahashi, K., Kajiwara, K., Sakamoto, K., (JAEA), „Experimental and theoretical thermal analysis of CVD diamond window assemblies‟, Workshop on RF Heating Technology of Fusion Plasmas 2008, US- EU-JPN RF Heating Technology Workshop, General Atomics, San Diego, CA/USA, Sept. 10th -12th 2008, USA.Google Scholar
[28] Scherer, T. A., Heidinger, R., Meier, A., Sakamoto, K., Takahashi, T., Kajiwara, K., Henderson, M., Chavan, R., „Design aspects and RF characterization of ITER-RF-CVD- Diamond windows‟, 15th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, EC-15, Yosemite (CA), USA, Proceedings, 09. March – 14. March 2008.Google Scholar
[29] Scherer, T. A., Heidinger, R., Meier, A., Strauss, D., (FZK); Takahashi, K., Kajiwara, K., Sakamoto, K., (JAEA), „Experimental and theoretical thermal analysis of CVD diamond window units fort he ITER upper launcher‟, IRMMW-THZ 2008, 33rd Intern. Conf. on Infrared, Millimeter, and Terahertz waves, CALTECH/NASA-JPL, Pasadena, CA, Sept. 15th -19th 2008, USA.Google Scholar
[30] Nebel, C. E., Rezek, B., Shin, D., Watanabe, H., „Surface electronic properties of H- terminated diamond in contact with adsorbates and electrolytes‟, Physica stat. sol. (a) 203, No. 13 (2006), pp. 32733298.Google Scholar
[31] Owens, D.K. and Wendt, R.C., “Estimation of the Surface Free Energy of Polymers”, J. Appl. Polym. Sci., 13:17411747, 1969.Google Scholar
[33] Gracio, J. J., Fan, Q. H., Madaleno, J. C., “Diamond growth by chemical vapour deposition”, J. Phys. D: Appl. Phys., 43 (2010), 374017.Google Scholar
[34] Scheuring, A., Probst, P., Stockhausen, A., Ilin, K., Siegel, M., Scherer, T. A., Meier, A., Strauss, D., “Dielectric RF properties of CVD diamond disks from sub-mm wave to THz frequencies”, IRMMW-THz-Conf., Rome, 2010.Google Scholar