Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T18:48:29.775Z Has data issue: false hasContentIssue false

Investigation on the Work Function of Tungsten and Thermal stability of W/SiO2/Si, W/SiON/Si and W/HfO2/Si Gate Stacks

Published online by Cambridge University Press:  01 February 2011

Pei-Chuen Jiang
Affiliation:
[email protected], National Cheng Kung University, Department of Materials Science and Engineering, No.1, Ta-Hsueh Road, Tainan, N/A, 701, Taiwan
Jen-Sue Chen
Affiliation:
[email protected], National Cheng Kung University, Tainan, N/A, 701, Taiwan
K. H. Cheng
Affiliation:
[email protected], Taiwan Semiconductor Manufacturing Company, Tainan, N/A, N/A, Taiwan
T. J. Hu
Affiliation:
[email protected], Taiwan Semiconductor Manufacturing Company, Tainan, N/A, N/A, Taiwan
K. B. Huang
Affiliation:
[email protected], Taiwan Semiconductor Manufacturing Company, Tainan, N/A, N/A, Taiwan
F. S. Lee
Affiliation:
[email protected], Taiwan Semiconductor Manufacturing Company, Tainan, N/A, N/A, Taiwan
Get access

Abstract

Replacement of poly-Si and SiO2 with new gate electrode and high k gate oxide is an inevitable trend for next-generation CMOS integrated circuits. Therefore, work function (£Xm) of gate electrodes as well as the thermal stability and electrical behaviors of MOS capacitors should be understood. In this study, tungsten (W) is applied as the gate electrode and the gate dielectric materials are SiO2, SiON and HfO2. £Xm of W and electrical properties of the MOS structures are investigated. £Xm,measured of W is calculated from the flat-band voltage (VFB) of MOS capacitors with dielectrics of various thicknesse. For W/SiO2/Si structure, the £Xm,measured of W is 4.67 V; however, the £Xm,measured of W in W/SiON/Si and W/HfO2/Si structures is 4.60 V and 4.84 V, respectively. The result means that the £Xm,measured of W in W/HfO2/Si structures has extrinsic contributions to Fermi level pinning. The phase of as-deposited W is £]-W (or £]-W+£\-W) phase and transfers to £\-W+WO3 mix phase after annealing at 500°C in N2+H2 ambient for 30 min. The trapped charges and oxide charges of dielectric are reduced after annealing. However, the EOT of W/SiO2/Si increases significantly after annealing, indicating the thermal stability of this capacitor is poor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Leveugle, C., Hurley, P. K., Mathewson, A., Moran, S., Sheehan, E., Kalnitsky, A., Lepert, A., Beinglass, I., Venkatesan, M., Microelectronic Engineering 36, 215 (1997).Google Scholar
2 Cho, W.J., Hong, J.E., Jin, W.H., Lee, K.S., Rha, S.K., Kim, H.S., Solid-State Electronics 44, 393 (2000).Google Scholar
3 Krisch, K. S., Green, M. L., Baumann, F. H., Brasen, D., Feldman, L. C., Manchanda, L., IEEE Trans. on Electron Devices 43, 982 (1996).Google Scholar
4 Ma, Z. J., Chen, J. C., Liu, Z. H., Krick, J. T., Cheng, Y. C., Hu, C., Ko, P. K., IEEE Electron Device Lett. 15, 109 (1994).Google Scholar
5 Schaeffer, J. K., Fonseca, L. R. C., Samavedam, S. B., Liang, Y., Tobin, P. J., and White, B. E., Appl. Phys. Lett. 85, 1826 (2004).Google Scholar
6 Xiong, K., Peacock, P. W., and Robertson, J., Appl. Phys. Lett. 86, 012904 (2005).Google Scholar
7 Liang, Y., Curless, J., Tracy, C. J., Gilmer, D. C., Schaeffer, J. K., Triyoso, D. H., and Tobin, P. J., Appl. Phys. Lett. 88, 072907 (2006).Google Scholar
8 Tung, R. T., Phys. Rev. B 64, 205310 (2001).Google Scholar
9 Yeo, Y.C., King, T.J., and Hu, C., J. Appl. Phys. 92, 7266 (2002).Google Scholar
10 Schroder, D. K., Semiconductor Material and Device Characterization, 2nd edition, Ch. 6, Wiley, New York (1998).Google Scholar
11 Strayer, R. W., Mackie, W., and Swanson, L. W., Surf. Sci. 34, 225 (1973).Google Scholar
12 Robertson, J., J. Vac. Sci. Technol. B 20, 1785 (2000).Google Scholar
13 Katagiri, A., Suzuki, M., and Takehara, Z.i., J. Electrochem. Soc. 138, 767 (1991).Google Scholar
14 Petroff, P., Sheng, T. T., Sinha, A. K., Rozgonyi, G. A., and Alexander, F. B., J. Appl. Phys. 44, 2545 (1973).Google Scholar
15 Morcom, W. R., Worrell, W. L., Sell, H. G., and Kaplan, H. I., Metallurg. Trans., 5, 155 (1974).Google Scholar
16 Zhang, S. K., Fu, Z. W., Ke, L., Lu, F., Qin, Q. Z., and Wang, X., J. Appl. Phys. 84, 335 (1998).Google Scholar