Published online by Cambridge University Press: 17 March 2011
The metallic glass former Pd-Ni-P is well known for its pronounced stability against crystallization. Samples of this alloy vitrify completely at low cooling rates down to 0.1 K/s. The addition of copper to this alloy system reduces further the crystallization kinetics significantly. Investigations on critical cooling rates were performed on Pd-Cu-Ni-P alloy by means of isothermal nucleation experiments. The results indicate a critical cooling rate in the order of 5.10−3 K/s, which is the lowest one presently known for metallic glass-formers. The high stability against crystallization during cooling allows for simultaneous measurements of its thermodynamic properties within the entire temperature range from the regime of the liquid to the glassy state. Heat capacity measurements were carried out by differential heat-flow calorimetry and the coefficient of thermal expansion was determined by applying sessile drop technique. The results can be described within the free-volume model.