Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:30:08.012Z Has data issue: false hasContentIssue false

Investigation on Site Density of Carbon Nanotube Forests

Published online by Cambridge University Press:  01 February 2011

Zhengchun Liu
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Center for Integrated Electronics, 110 8th Street, CII 6015, Troy, NY, 12180, United States, 518-276-8763, 518-276-8761
Sang Hwui Lee
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Center for Integrated Electronics, 110 8th Street, Troy, NY, 12180, United States
Navdeep Bajwa
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, 110 8th Street, Troy, NY, 12180, United States
Lijie Ci
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, 110 8th Street, Troy, NY, 12180, United States
Swastik Kar
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, 110 8th Street, Troy, NY, 12180, United States
Pulickel M. Ajayan
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, 110 8th Street, Troy, NY, 12180, United States
Jian-Qiang Lu
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Center for Integrated Electronics, 110 8th Street, Troy, NY, 12180, United States
Get access

Abstract

We report on a method for direct measurement of site density of vertically-aligned carbon nanotubes (CNTs). Site density is an important parameter of vertically-aligned carbon nanotube forests for various applications. By freezing the CNT forests in a polymer matrix and exposing the CNT ends, we obtained the site density of vertically aligned multi-walled CNTs through SEM observation and particle counting. Site densities of multi-walled CNTs grown by two different CVD processes, ferrocene/xylene process and Fe-Al/ethylene process, were measured to be ∼10 tubes/Ým2 and ∼53 tubes/Ým2, respectively. The results of site density distributions indicate non-uniform growth of carbon nanotubes at the micrometer scale in both processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cantoro, M., Hofmann, S., Pisana, S., Scardaci, V., Parvez, A., Ducati, C., Ferrari, A. C., Blackburn, A. M., Wang, K.-Y., and Robertson, J., Nano Letters, 6 (6), 11071112(2006).Google Scholar
2. Murakami, Y., Chiashi, S., Miyauchi, Y., Hu, M., Ogura, M., Okubo, T., Maruyama, S., Chemical Physics Letters, 385, 298303(2004).Google Scholar
3. Talapatra, S., Kar, S., Pal, S. K., Vajtai, R., Ci, L., Victor, P., Shaijumon, M. M., Kaur, S., Nalamasu, O. and Ajayan, P. M., Nature Nanotechnology, 1, 112116(2006).Google Scholar
4. Li, X., Cao, A., Jung, Y. J., Vajtai, R., and Ajayan, P. M., Nano Letters, 5(10), 19972000(2005).Google Scholar
5. Horibe, M., Nihei, M., Kondo, D., Kawabata, A., and Awano, Y., Japn. J. of Appl. Phys., 44(7A), 53095312(2005).Google Scholar
6. Naeemi, A., Sarvari, R., Meindl, J. D., IEEE Electron Dev. Lett., 26(2), 8486(2005).Google Scholar
7. Srivastava, N., Joshi, R. V. and Banerjee, K., IEEE International Electron Devices Meeting (IEDM), Washington DC, Dec. 5-7, 2005, pp. 257260.Google Scholar
8. Futaba, D.N., Hata, K., Namai, T., Yamada, T., Mizuno, K. et al. , J. Phys. Chem. B, 110 (15), 80358038 (2006).Google Scholar
9. Chakrapani, N., Wei, B., Carrilo, A., Ajayan, P. M., and Kane, R. S., PNAS, 101(12), 40094012(2004).Google Scholar
10. Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., Iijima, S., Science, 306 (5700), 13621364 (2004).Google Scholar
11. Ci, L., Vajtai, R., and Ajayan, P. M., J. Phys. Chem. B, under review.Google Scholar