Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T05:07:15.387Z Has data issue: false hasContentIssue false

Investigation of Thin Pd-Ge Layer Formation Using Synchrotron Vacuum Ultraviolet Photoemission Spectroscopy

Published online by Cambridge University Press:  25 February 2011

P. L. Meissner
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, CA
J. C. Bravman
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, CA
T. Kendelewicz
Affiliation:
Stanford University, Stanford Electronics Laboratory, Stanford CA
K. Miyano
Affiliation:
Stanford University, Stanford Electronics Laboratory, Stanford CA
W. E. Spicer
Affiliation:
Stanford University, Stanford Electronics Laboratory, Stanford CA
J. C. Woicik
Affiliation:
National Institute of Standards and Technology, Semiconductor Electronics Division, Gaithersburg, MD
C. Bouldin
Affiliation:
National Institute of Standards and Technology, Semiconductor Electronics Division, Gaithersburg, MD
Get access

Abstract

The formation of Pd-Ge layers was studied as a function of deposition and annealing using synchrotron Ultraviolet Photoemission Spectroscopy (UPS). Pd depositions ranging in thickness from 0.5 monolayers (ML) to 44 ML were examined in-situ on Ge (111) cleaved in ultra-high vacuum. The primary reaction components appear to be Pd2Ge and PdGe. Comparison of bulk and surface sensitive Ge 3d core levels for even the highest coverages indicates that Ge segregates to the surface at room temperature. Such low temperature segregation suggests that Ge can diffuse via a rapid diffusion mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sinha, A. K., Smith, T.E., Levinstein, H.J., IEEE Transactions on Electron Devices 22 (5), 218 (1975).CrossRefGoogle Scholar
[2] Grinolds, H.R., Robinson, G.Y., Solid St. Electron. 23, 973 (1980).CrossRefGoogle Scholar
[3] Marshall, E.D., Lau, S.S., Palmstrøm, C.J., Sands, T., Schwartz, C.L., Shwarz, S.A., Harbison, J.P., and Florez, L.T. in Chemistry and Defects in Semiconductor Heterostructures. edited by Kawabe, M., Sands, T.D., Weber, E.R., and Williams, R.S. (Mater. Res. Soc. Proc. 148, Pittsburg, PA 1989) p. 163.Google Scholar
[4] Yu, L.S., Wang, L.C., Marshall, E.D., Lau, S.S., Kuech, T.F., J. Appl. Phys. 65 (4), 1621 (1989)CrossRefGoogle Scholar
[5] Grant, R.W., Waldrop, J.R., J.Vac. Sci. Technol. B 5 (4), 1015 (1987);CrossRefGoogle Scholar
Chemistry and Defects in Semiconductor Heterostructures. edited by M. Kawabe, T.D. Sands, E.R. Weber, and R.S. Williams (Mater. Res. Soc. Proc. 148, Pittsburg, PA 1989) p. 125.Google Scholar
[6] Spicer, W.E., Newman, N., Cao, R., Miyano, K., Meissner, P., Spindt, C., and Kendelewicz, T., these proceedings.Google Scholar
[7] Wittmer, M., Nicolte, M.-A., Mayer, J.W., Thin Solid Films, 42, 51 (1977).CrossRefGoogle Scholar
[8] Kendelewicz, T., Petro, W.G., Pan, S.H., Williams, M.D., Lindau, I., Spicer, W.E., Appl. Phys. Lett. 44 (1), 113 (1984).CrossRefGoogle Scholar
[9] Sands, T., Keramidas, V.G., Gronsky, R., Washburn, J., Mat. Lett. 3 (9, 10), 409 (1985).CrossRefGoogle Scholar
[10] Chiaradia, P., Katnani, A.D., Sang, H.W., Bauer, R.S., Phys. Rev. Lett., 52 (14), 1246 (1984).CrossRefGoogle Scholar
[11] Aarts, J., Hoeven, A.-J., Larsen, P.K., Phys. Rev. B 38 (6), 3925 (1988).CrossRefGoogle Scholar
[12] Majni, G., Ferrari, G., Ferrari, R., Canali, C., Ottaviani, G., Solid St. Electron., 20, 551 (1977).CrossRefGoogle Scholar
[13] Ottaviani, G., Canali, C., Ferrari, G., Ferrari, R., Majni, G., Prudenziati, M., Lau, S.S., Thin Solid Films, 47, 187 (1977).CrossRefGoogle Scholar
[14] Massalski, Thaddeus B., Binary Alloy Phase Diagrams, (American Society for Metals, 1986), p. 1237.Google Scholar
[15] Marrello, V., Caywood, J.M., Mayer, J.W., Nicolet, M.-A., Phys. Stat. Sol. A, 13, 531 (1972).CrossRefGoogle Scholar
[16] Canali, C., Mayer, J.W., Ottaviani, G., Sigurd, D., van der Weg, W., Appl. Phys. Lett. 25, (1), 3, (1974).CrossRefGoogle Scholar
[17] Hong, Q.Z., Zhu, J.G., Mayer, J.W., Appl. Phys. Lett. 55, (8), 747, (1989).CrossRefGoogle Scholar