Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T04:18:03.920Z Has data issue: false hasContentIssue false

Investigation of the Surface Stress in SiC Nanocrystals by In-situ High Pressure Powder Diffraction Technique

Published online by Cambridge University Press:  10 February 2011

B. Palosz
Affiliation:
High Pressure Research Center UNIPRESS, ul. Sokolowska 29/37, 01-142 Warsaw, Poland
S. Stel'makh
Affiliation:
High Pressure Research Center UNIPRESS, ul. Sokolowska 29/37, 01-142 Warsaw, Poland
E. Grzanka
Affiliation:
High Pressure Research Center UNIPRESS, ul. Sokolowska 29/37, 01-142 Warsaw, Poland Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw, Poland
S. Gierlotka
Affiliation:
High Pressure Research Center UNIPRESS, ul. Sokolowska 29/37, 01-142 Warsaw, Poland
Y. Zhao
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
W. Palosz
Affiliation:
USRA/NASA-Marshall Space Flight Center, Huntsville, Alabama 35812, USA
Get access

Abstract

The properties of nanocrystals were studied by in-situ high-pressure powder diffraction technique using our methodology of the structural analysis, the “apparent lattice parameter” (alp) concept. The experiments were performed for nanocrystalline SiC and diamond powders using synchrotron and neutron sources and hydrostatic or isostatic pressure. Elastic properties of the samples were examined based on the measurements of the lattice parameters and of the reflection width, as well as of interatomic distances. The results show a dual nature of the properties (compressibilities) of the powders indicating a complex, core-shell structure of the grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Palosz, B., Grzanka, E., Gierlotka, S., Stel'makh, S., Pielaszek, R., Bismayer, U., Neuefeind, J., Weber, H.-P., and Palosz, W., Acta Physica Polonica (A) 102, 57 (2002).Google Scholar
[2] Palosz, B., Grzanka, E., Gierlotka, S., Stel'makh, S., Pielaszek, R., Lojkowski, W., Bismayer, U., Neuefeind, J., Weber, H.-P., and Palosz, W., Phase Transitions 76, 171 (2003).Google Scholar
[3] Palosz, B., Grzanka, E., Gierlotka, S., Stel'makh, S., Pielaszek, R., Bismayer, U., Neuefeind, J., Weber, H.-P., Proffen, Th., Dreele, R. Von, and Palosz, W., Zeitschrift für Kristallographie 217, 497 (2002).Google Scholar
[4] Palosz, B., Proceedings AMAS Course - MAM-2001, Ed. Mröz, Z., Warsaw 2002, pp. 235[2] .Google Scholar
[5] Palosz, B., Gierlotka, S., Stel'makh, S., Pielaszek, R., Zinn, P., and Bismayer, U., Journal of Alloys and Compounds, 286, 184 (1999).Google Scholar
[6] Peterson, P., Gutmann, M., Proffen, Th., Billinge, S.J.L., J. Appl. Cryst. 33, 1192 (2000).Google Scholar
[7] Pielaszek, R., “Diffraction Studies on Microstructure of Nanocrystals Under External Stresses”, Ph. D. Thesis, 2002, Warsaw University, Warsaw, Poland.Google Scholar