Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T13:39:04.441Z Has data issue: false hasContentIssue false

Investigation of the Si-rich silicon oxide by 3D atom probe tomography

Published online by Cambridge University Press:  01 February 2011

Etienne Talbot
Affiliation:
[email protected], United States
Lardé Rodrigue
Affiliation:
[email protected], Groupe de Physique des Matériaux, Université de Rouen, UMR CNRS 6634, Saint Etienne du Rouvray, France
Fabrice Gourbilleau
Affiliation:
[email protected], CIMAP, Caen Cedex 4, France
Christian Dufour
Affiliation:
[email protected], CIMAP, Caen cedex 4, France
Philippe Pareige
Affiliation:
[email protected], Groupe de Physique des Matériaux, Université de Rouen, UMR CNRS 6634, Saint Etienne du Rouvray, France
Get access

Abstract

Silicon rich silicon oxide multilayers for optical devices have been investigated by laser assisted wide angle atom probe tomography. Three dimensional mapping of silicon nanoclusters multilayers was obtained. The composition of the different phases were deduced and compared to theoretical concentration. These results evidenced a size distribution of the Si clusters diameter and an incomplete phase separation between silica and silicon particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzo, G. and Priolo, F., Nature, 408, 440 (2000).Google Scholar
2. Canham, L., Appl. Phys. Lett., 57, 1046 (1990).Google Scholar
3. Canham, L. T., Nature, 408, 411 (2000).Google Scholar
4. Gourbilleau, F., Levalois, M., Dufour, C., Vicens, J. and Rizk, R., J. Appl. Phys., 95, 3717 (2004).Google Scholar
5. Wodjak, M., Klik, M., Forcales, M., Gusev, O.B., Gregorkiewicz, T., Pacifici, D., Franzo, G., Priolo, F. and Iacona, F., Phys. Rev. B, 69, 233315 (2004).Google Scholar
6. Franzo, G., Boninelli, S., Pacifici, D., Priolo, F. Iacona, F., and Bongiorno, C., Appl. Phys. Lett., 82, 3871 (2003).Google Scholar
7. Gourbilleau, F., Portier, X., Ternon, C., Voivenel, P., Madelon, R. and Rizk, R., Appl. Phys. Lett., 78, 3058 (2001).Google Scholar
8. Blavette, D., Bostel, A., Sarrau, J. M., Deconihout, B. and Menand, A., Nature, 363, 432 (1993).Google Scholar
9. Miller, M. K., Atom Probe Tomogrpahy: Analysis at the Atomic Level, Springer 2000.Google Scholar
10. Kellog, G. and Tsong, T., J. Appl. Phys., 51, 1184 (1980).Google Scholar
11. Gault, B., Vurpillot, F., Gilbert, M., Vella, A., Menand, A., Blavette, D. and Deconihout, B., Rev. Sci. Instrum., 77, 043705 (2006).Google Scholar
12. Thomson, G. B., Miller, M. K. and Fraser, H. L., Ultramicroscopy, 100, 25 (2004).Google Scholar
13. Larson, D. J., Foord, D. R., Perford-Long, A. K., Liew, H., Blamire, M. G., Cerezo, A., and Smith, G. D. W., Ultramicroscopy, 79, 287 (1999).Google Scholar
14. Iacona, F., Bongiorno, C., Spinella, C., Boninelli, S. and Priolo, F., J. Appl. Phys., 95, 3723 (2004).Google Scholar