Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-02T19:56:02.947Z Has data issue: false hasContentIssue false

Investigation of The Electrical and Chemical Properties of Plasma-Treated AlGaN

Published online by Cambridge University Press:  01 February 2011

Xian-An Cao
Affiliation:
[email protected], West Virgina Univ., Department of Computer Science and Electrical Engineering, PO Box 6109, Morgantown, WV, 26506, United States
H. Piao
Affiliation:
[email protected], GE Global research Center, Niskayuna, NY, 12309, United States
S. F. LeBoeuf
Affiliation:
LeBoeuf @crd.ge,com, GE Global research Center, Niskayuna, NY, 12309, United States
J. Y. Lin
Affiliation:
[email protected], Kansas State University, Department of Physics, Manhattan, KS, 66506, United States
H. X. Jiang
Affiliation:
[email protected], Kansas State University, Department of Physics, Manhattan, KS, 66506, United States
Get access

Abstract

The surface properties of n-type AlxGa1−xN (x=0-0.5) exposed to inductively couple plasma were studied systematically using metal contact measurements and X-ray photoelectron spectroscopy (XPS). Cl2/BCl3 and Ar plasma treatment considerably increased the surface conductivity of AlxGa1−xN (x<0.3) and thus improved the characteristics of Ti/Al-based ohmic contacts, but degraded the surface and contact properties of AlxGa1−xN (x≥0.3). XPS measurements revealed a significant increase in oxygen incorporation and energy shifts of the core-level spectra in plasma-treated samples. In contrast to an upward shift of the surface Fermi level in plasma-treated GaN, the surface Fermi level moved away from the conduction band in Al0.5Ga0.5N upon plasma treatment. These findings suggest that the nature of plasma damage in AlGaN appears to be a function of the Al mole fraction. Plasma-induced defects in high-Al AlGaN may act as deep-level compensation centers, degrading the surface electrical properties and contact characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Allerman, A.A., Crawford, M.H., Fischer, A.J., Bogart, K.H.A., Lee, S.R., Follstaedt, D.M., Provencio, P.P. and Koleske, D.D., J. Cryst. Growth , 272, 227 (2005).Google Scholar
2. Zhang, J. P., Hu, X., Bilenko, Y., Deng, J., Lunev, A., Shur, M., Gaska, R., Shatalov, M., Yang, J. W., and Khan, M. Asif, Appl. Phys. Lett. 85, 5532 (2004).Google Scholar
3. Cao, X.A., LeBoeuf, S.F., Stecher, T.E., IEEE Electron. Dev. Lett. 27, 329 (2006).Google Scholar
4. Chitnis, Sun, J., Mandavilli, V., Pachipulusu, R., Wu, S., Gaevski, M., Adivarahan, V., Zhang, J. P., and Khan, M. A., Sarua, A. and Kuball, M., Appl. Phys. Lett. 81, 3491 (2002).Google Scholar
5. McClintock, R., Yasan, A., Mayes, K., Shiell, D., Darvish, S. R., Kung, P., and Razeghi, M., Appl. Phys. Lett. 84, 1248 (2004).Google Scholar
6. Ruvimov, S., Liliental-Weber, Z., Washburn, J., Qiao, D., Lau, S. S., and Chu, P. K., Appl. Phys. Lett. 73, 2582 (1998).Google Scholar
7. Motayed, Bathe, R., Wood, M. C., Diouf, O. S., Vispute, R. D., and Mohammad, S. Noor, J. Appl. Phys. 93, 1087 (2003).Google Scholar
8. Murai, S., Masuda, H., Koide, Y., and Murakami, M., Appl. Phys. Lett. 80, 2934 (2002).Google Scholar
9. Kumar, V., Zhou, L., Selvanathan, D., and Adesida, I., J. Appl. Phys. 92, 1712 (2002).Google Scholar
10. Cao, X.A., Pearton, S.J., Dang, G.T., Zhang, A.P., Ren, F., J.M.. Van Hove, IEEE Trans. on Electron Dev. 47, 1320 (2000).Google Scholar
11. Cao, X.A., Ren, F., Pearton, S. J., Critical Rev. Solid State Mat. Sci. 25, 279 (2000).Google Scholar
12. Fan, Z., Mohammad, S. N., Kim, W., Aktas, Ö., Botchkarev, A. E., and Morkoç, H., Appl. Phys. Lett. 68, 1672 (1996).Google Scholar
13. Jang, H. W., Jeon, C. M., Kim, J. K., and Lee, J. L., Appl. Phys. Lett. 78, 2015 (2001).Google Scholar
14. Nikishin, S.A., Borisov, B. A., Chandolu, A., Kuryatkov, V. V., Temkin, H., Holtz, M., Mokhov, E. N., Makarov, Y. and Helava, H., Appl. Phys. Lett. 85, 4355 (2004).Google Scholar
15. Selvanathan, D., Mohammed, F. M., Bae, J. O., Adesida, I., and Bogart, K. H., J. Vac. Sci.Technol. B 23, 2538 (2005).Google Scholar