Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T10:58:01.096Z Has data issue: false hasContentIssue false

Investigation of Polymer Dendritic Growth in Composite Material using Contact Resonance Method

Published online by Cambridge University Press:  03 March 2015

Ravi Gaikwad
Affiliation:
Department of Chemical and Materials Engg, University of Alberta, Edmonton
Xunchen Liu
Affiliation:
Department of Chemical and Materials Engg, University of Alberta, Edmonton
Priyesh Dhandharia
Affiliation:
Department of Chemical and Materials Engg, University of Alberta, Edmonton
Thomas Thundat
Affiliation:
Department of Chemical and Materials Engg, University of Alberta, Edmonton
Get access

Abstract

A special class of polymer called dendrons which are repeatedly branched polymers linked together by a network of cascade branched monomers. A composite of these dendritic polymers with linear polymers may have unique physical and chemical properties. Using contact resonance mode of atomic force microscopy we are able to detect the viscoelastic properties of the dendritic formation of the polyethylene oxide (PEO) mixed with Polyvinylpyrrolidone (PVP). PEO is known to form nanometric crystallites due to the diffusion limited aggregation process. However, the dendritic formation in the mixture has not been reported before. The amplitude and phase of the contact resonance shows a clear dendritic growth of PEO in the composite material. The extent of the polymer crystallization can be several nanometers thick within the composite material. Additionally, the intrinsic properties of such polymers to form denrimers can be explored for fabricating polymer composites having numerous potential applications in chemical sensing, drug-delivery, energy applications and many more.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Binnig, G., Quate, C., Gerber, C., Phys. Rev. B 56 (1986) 930.Google Scholar
Platz, D., Tholén, E. a, Hutter, C., von Bieren, A.C., Haviland, D.B., Ultramicroscopy 110 (2010) 573.Google Scholar
Bar, G., Thomann, Y., Brandsch, R., Cantow, H., Carolina, N., Langmuir 7463 (1997) 3807.CrossRefGoogle Scholar
Yamanaka, K., Maruyama, Y., Tsuji, T., Nakamoto, K., Appl. Phys. Lett. 78 (2001) 1939.CrossRefGoogle Scholar
Cuberes, M.T., Assender, H.E., Briggs, G.A.D., V Kolosov, O., J. Phys.D Appl. Phys. 33 (2000) 2347.CrossRefGoogle Scholar
Rabe, U., Arnold, W., Appl. Phys. Lett. 64 (1994) 1493.CrossRefGoogle Scholar
Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B., J. Appl. Phys. 93 (2003) 5650.CrossRefGoogle Scholar
Killgore, J.P., Yablon, D.G., Tsou, A H., Gannepalli, A, Yuya, P. A, Turner, J. A, Proksch, R., Hurley, D.C., Langmuir 27 (2011) 13983.CrossRefGoogle Scholar
Gannepalli, A., Yablon, D.G., Tsou, A H., Proksch, R., Nanotechnology 22 (2011) 355705.CrossRefGoogle Scholar
Stan, G., Cook, R.F., Nanotechnology 19 (2008) 235701.CrossRefGoogle Scholar
Street, S.G., Ia, M.S.S., Polymer (Guildf). 33 (1992) 432.Google Scholar
Hobbs, J.K., Vasilev, C., Humphris, A.D.L., Polymer (Guildf). 46 (2005) 10226.CrossRefGoogle Scholar
Feng, X.-S., Taton, D., Chaikof, E.L., Gnanou, Y., J. Am. Chem. Soc. 127 (2005) 10956.CrossRefGoogle Scholar
Wang, M., Braun, H.-G., Meyer, E., Polymer (Guildf). 44 (2003) 5015.CrossRefGoogle Scholar
Reiter, G., Sommer, J.-U., Phys. Rev. Lett. 80 (1998) 3771.CrossRefGoogle Scholar
Reiter, G., Sommer, J.-U., J. Chem. Phys. 112 (2000) 4376.CrossRefGoogle Scholar
Sommer, J.-U., Reiter, G., J. Chem. Phys. 112 (2000) 4384.CrossRefGoogle Scholar