Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:43:54.692Z Has data issue: false hasContentIssue false

Investigation of Point Defects in Si by Impurity Diffusion

Published online by Cambridge University Press:  21 February 2011

Shoichi Mizuo
Affiliation:
Central Research Laboratory, Hitachi Ltd., 1-280 Higashikoigakubo, Kokubunji, Tokyo 185
Hisayuki Higuchi
Affiliation:
Central Research Laboratory, Hitachi Ltd., 1-280 Higashikoigakubo, Kokubunji, Tokyo 185
Get access

Abstract

Our investigation of impurity diffusion in Si has clarified diffusion mechanisms and the point defect structure for the material. Thermal equilibrium between interstitials and vacancies in high temperature Si was clarified through observation of oxidation-retarded diffusion (ORD) of Sb in Si. Boron, Phosphorus, Aluminum and Galium were found to diffuse mainly due to an interstitialcy mechanism, while Sb did by a vacancy mechanism. Moreover, the atomic number in Si crystal compared to that at lattice sites was seen to play a dominant role in determining point defect concentration. Oxidation of Si and nitridation of SiO2 on Si lead to an increase in the atomic number of Si crystals and cause an increase in interstitial concentration as well as a decrease in vacancy concentration. On the other hand, nitridation of Si leads to a decrease in atomic number and causes vacancy super-saturation as well as interstitial under-saturation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Seeger, A. and Chik, K. P.: Phys. Stat. Soli. 29 455 (1968).10.1002/pssb.19680290202CrossRefGoogle Scholar
2 Hu, S. M.: Atomic Diffusion in Semiconductors (Plenum Press London, 1973) D. Shaw Ed.Google Scholar
3 Fair, R. B.: J. Appl. Phys. 51 5828 (1980).10.1063/1.327540Google Scholar
4 Fair, R. B.: J. Electrochem. Soc. 122 800 (1975).10.1149/1.2134326Google Scholar
5 Tannenbaum, E.: Solid State Electro. 2 123 (1961).10.1016/0038-1101(61)90029-6Google Scholar
6 Lee, D. B.: Philips Res. Rep. Suppl. No.5 (1974).Google Scholar
7 Taniguchi, K. et al.: J. Electrochem. Soc. 127 2243 (1980).10.1149/1.2129384Google Scholar
8 Booker, G. R. and Brown, L. M.: Philos. Mag., 33 613 (1965).Google Scholar
9 Hu, S. M.: J. Appl. Phys. 45 1567 (1974).10.1063/1.1663459Google Scholar
10 Mizuo, S. and Higuchi, H.: Jpn. J. Appl. Phys. 20 739 (1981).10.1143/JJAP.20.739Google Scholar
11 Mizuo, S. and Higuchi, H.: Jpn. J. Appl. Phys. 21 56 (1982).10.1143/JJAP.21.56Google Scholar
12 Mizuo, S. and Higuchi, H.: Denki Kagaku 50 338 (1982).Google Scholar
13 Antoniadis, D. A. and Moskowitz, I.: J. Appl. Phys. 53 6788 (1982).10.1063/1.330067Google Scholar
14 Mizuo, S. et al.: J. Appl. Phys. 54 3860 (1983).10.1063/1.332611Google Scholar
15 Fahey, P. and Dutton, R. W.: Appl. Phys. Lett. 43 683 (1983).10.1063/1.94445Google Scholar
16 Hayafuji, Y. et al.: J. Appl. Phys. 53 8639 (1982).10.1063/1.330460Google Scholar
17 Mizuo, S. and Higuchi, H.: Jpn. J. Appl. Phys. 21 281 (1982).10.1143/JJAP.21.281Google Scholar
18 Mizuo, S. and Higuchi, H.: Denki Kagaku 51 403 (1983).Google Scholar
19 Mizuo, S. and Higuchi, H.: Jpn. J. Appl. Phys. 20 1749 (1981).10.1143/JJAP.20.1749Google Scholar
20 Mizuo, S. and Higuchi, H.: J. Electrochem. Soc. 129 2292 (1982).10.1149/1.2123496Google Scholar
21 Mizuo, S. and Higuchi, H.: J. Electrochem. Soc. 130 1942 (1983).10.1149/1.2120127Google Scholar
22 Mizuo, S. and Higuchi, H.: Jpn. J. Appl. Phys. 21 272 (1982).10.1143/JJAP.21.272CrossRefGoogle Scholar
23 Mizuo, S. and Higuchi, H.: Jpn. J. Appl. Phys. 20 1547 (1982).10.1143/JJAP.21.1547Google Scholar
24 Antoniadis, D. A. et al.: Stanford Univ. Tech. Rep. SUSEL 77–066 May 1977.Google Scholar