Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:02:08.516Z Has data issue: false hasContentIssue false

Investigation of Plastic Relaxation in Si1-xGex/Si Deposited by Selective Epitaxy

Published online by Cambridge University Press:  10 February 2011

S. Wickenhäuser
Affiliation:
Institut für Schicht- und lonentechnik (ISI), Forschungszentrum Jülich GmbH (KFA), D-52425 Jülich, Germany
L. Vescan
Affiliation:
Institut für Schicht- und lonentechnik (ISI), Forschungszentrum Jülich GmbH (KFA), D-52425 Jülich, Germany
Get access

Abstract

Si1-xGex/Si heterostructures with different layer thicknesses grown by selective LPCVD epitaxy at different growth temperatures were investigated with regard to plastic relaxation. AFM and optical micrograph were performed to determine the dislocation density. From the analysis of the misfit dislocations at the initial stage of relaxation of the samples grown at 700°C it was possible to determine the nucleation site density and an activation energy of 2.8 eV for the heterogeneous nucleation of misfit dislocations. While the critical thickness hc for a given Ge content increases with decreasing growth temperature between 800°C-680°C one observes a dramatic decay of hc, at a growth temperature of 625°C. For growth at 625°C it was found that this activation barrier is drastically decreased.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ismail, K., Meyerson, B. S., Wang, P. J., Appl. Phys. Lett., 58, 2117 (1991)Google Scholar
2. Hull, R., Bean, J. C., Werder, D. C., Leibenguth, R. E., Phys. Rev. B, 40, 1681 (1989)Google Scholar
3. Hull, R., Bean, J. C., J. Vac. Sci. Technol. A 7, 2580 (1989)Google Scholar
4. Houghton, D. C., Appl. Phys. Lett., 57, 2124 (1990)Google Scholar
5. Houghton, D. C., J. Appl. Phys., 70, 2136 (1991)Google Scholar
6. Wickenhauser, S., Vescan, L., Schmidt, K., Lüth, H., Appl. Phys. Lett., 70, 324 (1997)Google Scholar
7. Vescan, L., (unpublished)Google Scholar
8. Matthews, J. W., Blakeslee, A. E., J. Cryst. Growth, 27, 118 (1974)Google Scholar
9. Tang, H. P., Vescan, L., J. Cryst. Growth, 114, 1 (1992)Google Scholar
10. Chen, H., Guo, L. W., Cui, Q., Hu, Q, Huang, Q, Zhou, J. M., J. App. Phys., 79, 1167 (1996)Google Scholar
11. Linder, K. K., Zhang, F. C., Rieh, J.-S., Bhattacharya, P., Houghton, D., Appl. Phys. Lett., 70, 3224 (1997)Google Scholar
12. Fitzgerald, E. A., Watson, G. P., Proano, R. E., Ast, D. G., Kirchner, P. D., Pettit, G. D., Woodall, J.-M., J. Appl. Phys., 65, 2220 (1989)Google Scholar
13. Perovic, D. D., Houghton, D. C., phys. stat. sol. (a), 138, 425 (1993)Google Scholar