Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:32:37.289Z Has data issue: false hasContentIssue false

Investigation of Local Structures Around Mn Atoms in In1-xMnxAs Diluted Magnetic Semiconductors Using Exafs

Published online by Cambridge University Press:  15 February 2011

Y. L. Soo
Affiliation:
Department of physics, state University of New York at Buffalo, Amherst, New York, 14260
S. W. Huang
Affiliation:
Department of physics, state University of New York at Buffalo, Amherst, New York, 14260
Z. H. Ming
Affiliation:
Department of physics, state University of New York at Buffalo, Amherst, New York, 14260
Y. H. Kao
Affiliation:
Department of physics, state University of New York at Buffalo, Amherst, New York, 14260
H. Munekata
Affiliation:
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama, Japan
L. L Chang
Affiliation:
Hong Kong University of Science and Technology, Kowloon, Hong Kong
Get access

Abstract

Extended x-ray absorption fine structure (EXAFS) techniques have been used to investigate the local structures in Inl-xMnxAs films grown by molecular beam epitaxy (MBE) under different processing conditions. For samples grown at low substrate temperatures (near 200°C) or with a low Mn concentration (about 1 atomic%), the Mn atoms can substitute for In in the InAs host, thus indicating that III-V diluted magnetic semiconductors (DMS) can indeed be prepared by substitutional doping of magnetic impurities. On the other hand, substitution dose not take place in high Mn concentration (above 10%) samples grown at high substrate temperatures (around 300°C); these samples contain a large amount of MnAs clusters and become ferromagnetic

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Munekata, H., Ohno, H., Molnar, S. von, Armin, Segmüller, Chang, L. L. and Esaki, L., Phys. Rev. Lett. 63, 1849 (1989)Google Scholar
2. Munekata, H., Ohno, H., Molnar, S. von,Harwit, Alex, Segmuiller, Armin,and Chang, L. L., J. Vac. Sci. Technol. B 8, 176 (1990)Google Scholar
3. Ohno, H., Munekata, H., Molnar, S. von, and Chang, L. L., J. Appl. Phys. 69, 6103 (1991)Google Scholar
4. Molnar, S. von, Munekata, H., Ohno, H. and Chang, L. L., J. Magn. Magn. Mater. 93,356 (1991)Google Scholar
5. Newville, M., Lïvin, P., Yacoby, Y., Rehr, J. J. and Stern, E. A., Phys. Rev. B 47, 14126 (1993)Google Scholar
6. Henke, B. L, Lee, P., Tanaka, T. J., Shimabukuro, R. L., and Fujikawa, B. K., At. Data Nucl. Data Tables 27, 3 (1982)Google Scholar
7. McMaster, W. H., Grande, N. Kerr Del, Mallett, J. H. and Hubbell, J. H., Compilation of X-ray Cross Sections, (National Technical Information Services, Springfield, 1969)Google Scholar
8. Lee, P. A., Citrin, P. H., Eisenberger, P., and Kincaid, B. M., Rev. Mod. Phys. 53,760 (1981)Google Scholar
9. Sayers, D. E., Bunker, B. A., in X-ray Absorption, edited by Koningsberger, D. C. and Prins, R. (Wiley, New York, 1988), p.211 Google Scholar
10. Rehr, J. J., Leon, J. Mustre de, Zabinsky, S. I. and Albers, R. C., J. Am. Chem. Soc. 113, 5135 (1991)Google Scholar