Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T12:50:15.934Z Has data issue: false hasContentIssue false

Investigation of Interaction of Hydrogen with Defects in Zirconia

Published online by Cambridge University Press:  31 January 2011

Oksana Melikhova
Affiliation:
[email protected], Charles University, Low Temperatures, Prague, Czech Republic
Jan Kuriplach
Affiliation:
[email protected], Charles University, Low Temperatures, Prague, Czech Republic
Jakub Cizek
Affiliation:
[email protected], United States
Ivan Prochazka
Affiliation:
[email protected], United States
Gerhard Brauer
Affiliation:
[email protected], Forschungszentrum Dresden-Rossendorf, Institut für Strahlenphysik, Dresden, Germany
Wolfgang Anwand
Affiliation:
[email protected], United States
Get access

Abstract

In the present work we study theoretically hydrogen incorporated into several positions in the zirconia cubic and tetragonal lattices. These are positions in the interstitial space and in the zirconium vacancy (VZr). We examine the structure of such configurations and for VZr-related defects we also calculate selected positron characteristics in order to assess their capability of trapping positrons. It is shown that hydrogen atoms do not prefer to stay in the center of the largest interstitial space nor of VZr and they rather tend to create bonds with neighboring oxygen atoms. The positron lifetime of the VZr+1H complex is shorter than that for non-decorated VZr and positron trapping in VZr+1H complexes could, in principle, explain experimental lifetime data.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Positron Spectroscopy of Solids, edited by Dupasquier, A. and Mills, A. P. Jr. (IOS, Amsterdam, 1995).Google Scholar
2. Guo, X. and Wang, Z. J. Eur. Ceram. Soc. 18 237 (1998).Google Scholar
3. Melikhova, O. Kuriplach, J. Cizek, J. Prochazka, I. and Brauer, G. Mater. Sci. Forum 607 125 (2009).Google Scholar
4. Brauer, G. Anwand, W. Grambole, D. Grenzer, J. Skorupa, W. Cizek, J. Kuriplach, J. Prochazka, I. Ling, C. C. So, C. K. Schulz, D. and Klimm, D. Phys. Rev. B79 115212 (2009).Google Scholar
5. Grambole, D. et al. , to be published.Google Scholar
6. Walle, C. G. Van de, Phys. Rev. Lett. 85 1012 (2000).Google Scholar
7. Janotti, A. and Walle, C. G. Van de, Nature Mater. 6 44 (2007).Google Scholar
8. Kuriplach, J. Brauer, G. Melikhova, O. Cizek, J. Prochazka, I. and Anwand, W. 2009 MRS Fall Meeting Proceedings (Symposium H).Google Scholar
9. Melikhova, O. Kuriplach, J. Cizek, J. Prochazka, I. Brauer, G. and Anwand, W. submitted to J. Phys.: Conf. Series; Advanced Science Research Symposium, Tokai, Japan, November 2009.Google Scholar
10. Kresse, G. and Hafner, J. Phys. Rev. B47 558 (1993), ibid. 49, 14251 (1994); G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).Google Scholar
11. Kresse, G. and Hafner, J. J. Phys.: Condens. Matter 6 8245 (1994); G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).Google Scholar
12. Ostanin, S. Salamatov, E. Craven, A. J. McComb, D. W. and Vlachos, D. Phys. Rev. B66 1132105 (2002).Google Scholar
13. Puska, M. J. and Nieminen, R. M. J. Phys. F: Met. Phys. 13 333 (1983); A. P. Seitsonen, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 51, 14057 (1995).Google Scholar
14. Boroński, E. and Nieminen, R. M. Phys. Rev. B34 3820 (1986).Google Scholar
15. Puska, M. J. Mäkinen, S., Manninen, M. and Nieminen, R. M. Phys. Rev. B39 7666 (1989).Google Scholar
16. Barbiellini, B. Puska, M. J. Torsti, T. and Nieminen, R. M. Phys. Rev. B51 7341 (1995).Google Scholar
17. Mathews, J. H. Int. J. Math. Edu. Sci. Tech. 34 280 (2003).Google Scholar
18. Puska, M. J. and Nieminen, R. M. Rev. Mod. Phys. 66 841 (1994).Google Scholar
19. Kuriplach, J. Melikhova, O. and Brauer, G. Rad. Phys. Chem. 76 101 (2007).Google Scholar