Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T18:20:26.775Z Has data issue: false hasContentIssue false

The Investigation of InGaN MQW Electroabsorption Modulator using the LED/Modulator/Detector Monolithically Integrated Structure

Published online by Cambridge University Press:  17 March 2011

S.W. Chung
Affiliation:
Department of Electrical and Computer Engineering, University of California, Irvine CA 92697
Y.S. Zhao
Affiliation:
Department of Electrical and Computer Engineering, University of California, Irvine CA 92697
C.H. Lin
Affiliation:
Department of Electrical and Computer Engineering, University of California, Irvine CA 92697
H.P. Lee
Affiliation:
Department of Electrical and Computer Engineering, University of California, Irvine CA 92697
Get access

Abstract

The strong piezoelectric effect and quantum confined stark effect (QCSE) in the InGaN/GaN quantum well structures allow one to modify the free exciton absorption by the extrinsic field. The QCSE is investigated using a monolithically integrated three-section device comprising an LED, electroabsorption modulator and a detector section. The experimental results show that the LED output can be modulated as indicated by the detector signal. The strength of modulation decreases monotonically with increasing In composition in the InGaN/GaN MQW. The result can be explained on the basis of the Stokes' shift between the emission and absorption spectra in the InGaN/GaN QW structure, and a blue shift of the absorption spectrum due to the QCSE as a result of the piezoelectric effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Satake, A., Masumoto, Y., Miyajima, T., Asatsuma, T., Nakamura, F., and Ikeda, M., Phys. Rev. B, 57 (4), R2041–R2044, 1998.Google Scholar
2. McCluskey, M. D., Romano, L. T., Krusor, B. S., Bour, D. P., Johnson, N. M., Brennan, S., Appl. Phys. Lett., 72 (14), 17301732, 1998.Google Scholar
3. Chichibu, S. F., Marchand, H., Minsky, M. S., Keller, S., Fini, P. T., Ibbetson, J. P., Fleischer, S. B., speck, J. S., Bowers, J. E., Hu, E., Mishra, U. K., DenBaars, S. P., Deguchi, T., Sota, T., Nakamura, S., Appl. Phys. Lett., 74 (10), 14601462, 1999.Google Scholar
4. Peng, L. H., Chuang, C. W., Lou, L.H., Appl. Phys. Lett., 74 (6), 795797, 1999.Google Scholar
5. Takeuchi, T., Wetzel, C., Yamaguchi, S., Sakai, H., Amano, H., Akasaki, I., Kaneko, Y., Nakagawa, S., Yamaoka, Y., Yamada, N., Appl. Phys. Lett., 73(12), 16911693, 1998.Google Scholar
6. Jiang, Hongtao and Singh, jasprit, Appl. Phys. Lett., 75 (13), pp19321934, 1999.Google Scholar
7. Zhao, Y. S., Devane, G., Sun, Z. Z., Stair, K. A., Liu, Y., Du, G. T., Chang, R. P. H., Semicond. Sci. & Technol. 12 (5), 576579. 1997.Google Scholar
8. Chichibu, S., Azuhata, T., Sota, T., Nakamura, S., Appl. Phys. Lett. 69 (27), 41884190, 1996.Google Scholar
9. Martin, R. W., Middleton, P. G., O'Donnell, K. P., Stricht, W. Van der, Appl. Phys. Lett., 74 (2), 263265, 1999.Google Scholar
10. O'Donnell, K. P., Breitkopf, T., Kalt, H., Stricht, W. Van der, Moerman, I., Demeester, P., Middleton, P. G., Appl. Phys. Lett., 70 (14), 18431845, 1997.Google Scholar