Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:50:15.279Z Has data issue: false hasContentIssue false

Investigation of Fluorine Effect on the Boron Diffusion by Mean of Boron Redistribution in Shallow Delta-doped Layers

Published online by Cambridge University Press:  17 March 2011

A. Halimaoui
Affiliation:
STMicroelectronics
J. M. Hartmann
Affiliation:
CEA-LETI, 17 rue des Martyrs 38054 Grenoble Cedex, France
C. Laviron
Affiliation:
CEA-LETI, 17 rue des Martyrs 38054 Grenoble Cedex, France
R. El-Farhane
Affiliation:
Philips, 850 rue Jean Monnet 38926 Crolles Cedex, France
F. Laugier
Affiliation:
CEA-LETI, 17 rue des Martyrs 38054 Grenoble Cedex, France
Get access

Abstract

Previously published articles have shown that co-implanted fluorine reduces transient enhanced diffusion of boron. However, it is not yet elucidated whether this effect is due to interaction of fluorine with point-defects or boron atoms. In this work, we have used boron redistribution in a shallow Delta-doped Si structures in order to get some insights into the role of fluorine in the boron diffusion. The structures consisted of 3 boron-doped layers separated by 40nm-thick undoped silicon. The samples were given to Ge preamorphization and F co-implant. SIMS depth profiling was used to analyse boron redistribution after annealing. The results we obtained strongly suggest that fluorine is not interacting with point-defects. The reduction in boron TED is most probably due to boron-fluorine interaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cowern, N. E. B., Mannino, G., Stolk, P. A., Roozeboom, F., Huizing, H. G. A., Berkum, J. G. M. van, Cristiano, F., Claverie, A., and Jaraiz, M., Phys. Rev. Lett. 82, 4460 (1999).Google Scholar
2. Jain, S. C., Schoenmaker, W., Lindsay, R., Stomk, P. A., Decoutere, S., Willander, M., and Maes, H. E., J. Appl. Phys. 91, 8919 (2002).Google Scholar
3. Cowern, N. E. B., Walle, G. F.A. van de, Zalm, P. C., and Vandenhoudt, D. W. E., Appl. Phys. Lett. 65, 2981 (1994).Google Scholar
4. Huang, T. H., Kinoshita, H., and Kwong, D. L., Appl. Phys. Lett. 65, 1829 (1994)Google Scholar
5. Downey, D. F., Chow, J. W., Ishida, E., and Jones, K. S., Appl. Phys. Lett. 73, 1263 (1998)Google Scholar
6. Park, Y. J., and Kim, J. J., J. Appl. Phys. 85, 803 (1999)Google Scholar
7. Robertson, L. S., Warnes, P. N., Jones, K. S., Earles, S. K., Law, M. E., Downey, D. F., Falk, S., and Liu, J., Mat. Res. Soc. Symp. Proc. Vol 610 (2000)Google Scholar
8. Diebeln, M. Chakravarthi, S., Dunham, S. T., Machala, C. F., Ekbote, S., and Jain, A.. Mat. Res. Soc. Symp. Proc. Vol 765 (2003).Google Scholar
9. Impellizeri, G., Santos, J. H. R. dos, Mirabella, S., Priolo, F., Napolitani, E., and Camera, A., Appl. Phys. Lett. 84, 1862 (2004).Google Scholar