Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T12:13:13.224Z Has data issue: false hasContentIssue false

Investigation of Biaxial Strain in Strained Silicon on Insulator (SSOI) Using High-Resolution X-ray Diffraction

Published online by Cambridge University Press:  01 February 2011

Yeongseok Zoo
Affiliation:
[email protected], Arizona State University, School of Materials, university drive and mill avenue, tempe, AZ, 85287, United States
N. D. Theodore
Affiliation:
[email protected], Freescale Semiconductor Inc., tempe, AZ, 85284, United States
Terry L. Alford
Affiliation:
[email protected], Arizona State University, School of Materials, tempe, AZ, 85287-8706, United States
Get access

Abstract

Intrinsic biaxial strain values of strained Si on insulator (SSOI) layers were measured using symmetric Bragg-Brentano configuration (i.e., {004} θ-2θ scans) and asymmetric {224} rocking curves. We confirmed that the twist angle between the layer and substrate can be incorporated into the biaxial strain equations for epitaxial layers. Moreover, as the samples were annealed up to 1200°C, the tensile parallel strains increased from 0.56% to 0.7%. Since both the overlying strained Si and underlying substrate maintained a stressed state in the buried SiO2, the compressively strained oxide retained the lattice expansion of the overlying strained Si and resulted in the increasing parallel strains after annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T., and Lochtefeld, A., J. Appl. Phys. 97, 1 (2005).Google Scholar
2. Bartels, W. J., J. Vac. Sci. Technol. B 1, 338 (1983).Google Scholar
3. Zeng, Y., Zou, Y. L., Alford, T. L., Deng, F., Lau, S. S., Laursen, T., and Ullrich, B. M., J. Appl. Phys. 81, 7773 (1997).Google Scholar
4. Bair, A. E., Alford, T. L., Sego, S., Atzmon, Z., Culbertson, R. J., Mater. Chem. Phys. 46, 283 (1996).Google Scholar
5. Rim, K., Chan, K., Shi, L., Boyd, D., Ott, J., Klymko, N., Cardone, F., Tai, L., Koester, S., Cobb, M., Canaperi, D., To, B., Duch, E., Babich, I., Carruthers, R., Saunders, P., Walker, G., Zhang, Y., Steen, M., and Ieong, M., IEEE IDEM, 49 (2003).Google Scholar
6. Ghyselen, B., Hartmann, J. M., Ernst, T., Aulnette, C., Osternaud, B., Bogumilowicz, Y., Abbadie, A., Besson, P., Rayssac, O., Tiberj, A., Daval, N., Cayrefourq, I., Fournel, F., Moriceau, H., Nardo, C. Di, Andrieu, F., Paillard, V., Cabie, M., Vincent, L., Snoeck, E., Cristiano, F., Rocher, A., Ponchet, A., Claverie, A., Boucaud, P., Semeria, M. N., Bensahel, D., Kernevez, N., and Mazure, C., Solid-State Electron. 48, 1285 (2004).Google Scholar
7. Camassel, J., Falkovsky, L. A., and Planes, N., Phys. Rev. B 63, 035309 (2000).Google Scholar
8. Zoo, Y., Adams, D., Mayer, J.W., and Alford, T.L., Thin Solid Films 513, 170 (2006).Google Scholar
9. Omi, H., Kawamura, T., Fujikawa, S., Tsusaka, Y., Kagoshima, Y., and Matsui, J., Appl. Phys. Lett. 86, 263112 (2005).Google Scholar