Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:20:30.412Z Has data issue: false hasContentIssue false

Investigation of a Thermal Spike Model for Ion Mixing of Metals with SI

Published online by Cambridge University Press:  25 February 2011

U. Shreter
Affiliation:
California Institute of Technology, Pasadena, Ca 91125
Frank C.T. So
Affiliation:
California Institute of Technology, Pasadena, Ca 91125
B. M. Paine
Affiliation:
California Institute of Technology, Pasadena, Ca 91125
M-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, Ca 91125
Get access

Abstract

A Model for Ion Mixing of Bilayer systems in a thermal spike is described. Normal thermal reactions, at a constant average temperature, are assumed for the duration of the spike. New experimental results on mixing of a Nb/Si couple with Xe ions are shown to agree with the prediction of the model that the apparent activation energy in ion mixing can depend upon the ion species. Calculations of spike mixing for Cr and Ni with Si are presented which show that a substantial part of the experimentally observed mixing rates, and their temperature dependence, can be attributed to thermal spike effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matteson, S., Roth, J., and Nicolet, M-A., Rad. Eff., 42, 217 (1979).Google Scholar
2. Mayer, J. W., Tsaur, B. Y., Lau, S. S., and Hung, L-S., Nuci. Instr. and Meth., 182/183, 1 (1981).Google Scholar
3. Averback, R. S., Thompson, L. J., Moyle, J., and Schalit, M., J. Appl. Phys., 53, 1342 (1982).Google Scholar
4. Averback, R. S. in: Proceedings of the Workshop on Ion Mixing and Surface Layer Alloying, Picraux, S. T. and Nicolet, M-A., Eds., (Sandia Report SANDG3-1230, 1983).Google Scholar
5. Shreter, U., So, F. C. T., and Nicolet, M-A., submitted for publication in J. Appl. Phys.Google Scholar
6. Nicolet, M-A. and Lau, S. S. in: VLSI Electronics: Microstructure Science Einspruch, N., Series Ed., Supplement A - Materials and Process Characterization, Larrabee, G., Ed., (Academic Press, New York, 1983) p. 329.Google Scholar
7. Thompson, D. A., Rad. Eff., 56, 105 (1981).Google Scholar
8. Wagner, R. J., Lau, S. S., Mayer, J. W., and Roth, J. A.. Thin Film Phenomena-Interfaces and Reactions, Baglin, J. E. E. and Poate, J. M., Eds., (The Electrochemical Society, N.J., 1978), p. 59.Google Scholar
9. Lien, C-D., unpublished.Google Scholar
10. Wielunski, L. S., Paine, B. M., Liu, B. X., Lien, C.-D., and Nicolet, M-A., phys. stat. sol. (a). 72, 399 (1982).Google Scholar
11. Winterbon, K. B., Ion Implantation Range and Energy Deposition Distributions, Vol.2 (Plenum, New York 1975).Google Scholar
12. Sigmund, P., Appl. Phys. Lett., 25, 169 (1974),Google Scholar
12a. Appl. Phys. Lett., 27, 53 (1975).Google Scholar
13. Sanders, J. B., Rad. Eff., 51, 43 (1980).Google Scholar
14. Vineyard, G. H., Rad. Eff., 29, 245 (1976).Google Scholar