Article contents
Investigation and Research on Depth Distribution in Soil of Radionuclides Released by the TEPCO Fukushima Dai-ichi Nuclear Power Plant Accident
Published online by Cambridge University Press: 18 March 2013
Abstract
The accident of the TEPCO Fukushima Dai-ichi Nuclear Power Plant occurred by the 2011 off the Pacific coast of Tohoku Earthquake on 11 Mar. 2011. It is estimated that totally 1.2-1.5x1016 Bq for 137Cs and 1.5-1.6x1017 Bq for 131I were released until the beginning of Apr. and those radionuclides (RN) were deposited on soil surface and forest etc. widely around Fukushima Pref. This work was carried out as one of the investigations for making the distribution maps of radiation dose rate and soil contaminated by RNs which the MEXT promotes. The Geoslicer investigation on the depth distribution of RNs in soil was performed after 3 months from the accident. The investigation was conducted at 11 locations in Nihonmatsu City, Kawamata Town and Namie Town, and soil samples of depth 50 cm to 1 m were taken. Both of 134Cs and 137Cs were detected in all investigated locations, and 129mTe and 110mAg were detected only in locations where radiation dose rates are high. At many locations investigated, radiocaesium more than 99 % distributed within a depth of 10 cm in soil in the surface layer. On the other hand, RNs tended to distribute to deeper part in soil at locations that are supposed to have been used as farmland than in soil in the surface layer, and radiocaesium more than 99 % in soil at locations that are supposed to have been used as farmland also distributed within a depth of around 14 cm. The apparent diffusion coefficients (Da) of RNs derived from penetration profiles near the surface layer showed a tendency to be higher in soil at locations that are supposed to have been used as farmland (Da=0.1-1.5x10-10 m2/s) than in soil in the surface layer (Da=0.65-4.4x10-11 m2/s), and most Da-values were nearly 10-11 m2/s. The distribution coefficients (Kd) by a batch method were in the range of Kd=2,000-61,000 ml/g for Cs and Kd=0.5-140 ml/g for I. Although the Kd-values are different between cation (Cs+) and anion (I-), the Da-values (134Cs, 137Cs, 129mTe and 110mAg) were similar levels. This is considered to be due to that the Da-values were controlled by dispersion by flow of rain water.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2013
References
REFERENCES
- 4
- Cited by