Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T23:16:07.839Z Has data issue: false hasContentIssue false

Inverted OLEDs with Electrically Doped Carrier Injection and Transport Layers

Published online by Cambridge University Press:  01 February 2011

Xiang Zhou
Affiliation:
Institute fuer Angewandte Photophysik, Technische Universitaet Dresden, D-01062 Dresden, Germany
Martin Pfeiffer
Affiliation:
Institute fuer Angewandte Photophysik, Technische Universitaet Dresden, D-01062 Dresden, Germany
Jing S. Huang
Affiliation:
Institute fuer Angewandte Photophysik, Technische Universitaet Dresden, D-01062 Dresden, Germany
Jan Blochwitz
Affiliation:
Institute fuer Angewandte Photophysik, Technische Universitaet Dresden, D-01062 Dresden, Germany
Ansgar Werner
Affiliation:
Institute fuer Angewandte Photophysik, Technische Universitaet Dresden, D-01062 Dresden, Germany
Karl Leo
Affiliation:
Institute fuer Angewandte Photophysik, Technische Universitaet Dresden, D-01062 Dresden, Germany
Get access

Abstract

Conventional organic light-emitting diodes (OLEDs) having electrically doped carrier injection and transport layers with high conductivity exhibit extremely low driving voltages, which is due to the formation of radical anions and cations and ohmic contacts at the electrode interfaces. We report here an inverted OLEDs with indium-tin-oxide (ITO) bottom contact as cathode for electron injection. The device comprise an intrinsic 8-tris-hydroxyquinoline aluminum (Alq3) emission layer sandwiched in between n- and p-doped charge transport layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tang, C. W. and Slyke, S. A. V. Appl. Phys. Lett. 51, 913 (1987).Google Scholar
2 Hung, L. S. Tang, C. W. and Mason, M. G. Appl. Phys. Lett. 70, 152 (1997)Google Scholar
3 Baigent, D. R. Marks, R. N. Greenham, N. C. Friend, R. H. Moratti, S. C. and Holmes, A. B. Appl. Phys. Lett. 65, 2636 (1994)Google Scholar
4 Bulovic, V. Tian, P. Burrows, P. E. Gokhale, M. R. and Forrest, S. R. and Thompson, M. E. Appl. Phys. Lett. 70, 2954 (1997)Google Scholar
5 Huang, J. S. Pfeiffer, M. Werner, A. Blochwitz, J. Leo, K. and Liu, S. Y. Appl. Phys. Lett. 80, 139 (2002).Google Scholar
6 Bharathan, J. M. and Yang, Y. J. Appl. Phys. 84, 3207 (1998)Google Scholar
7 Yamamori, A. Adachi, C. Koyama, T. Taniguchi, Y. Appl. Phys. Lett. 72, 2147 (1998)Google Scholar
8 Blochwitz, J. Pfeiffer, M. Fritz, T. Leo, K. Appl. Phys. Lett., 73, 729 (1998)Google Scholar
9 Kido, J. Matsumoto, T. Appl. Phys. Lett. 73, 2866 (1998)Google Scholar
10 Ganzorig, C. and Fujihara, M. Appl. Phys. Lett. 77, 4211 (2000)Google Scholar
11 Zhou, X. Pfeiffer, M. Blochwitz, J. Werner, A. Nollau, A. Fritz, T. and Leo, K. Appl. Phys. Lett. 78, 410 (2001)Google Scholar
12 Zhou, X. Blochwitz, J. Pfeiffer, M. Nollau, A. Fritz, T. and Leo, K. Adv. Funct. Mater. 11, 310 (2001).Google Scholar
13 Blochwitz, J. Pfeiffer, M. Hofmann, M. and Leo, K. Synth. Met. 127, 169 (2002)Google Scholar