Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T18:34:00.421Z Has data issue: false hasContentIssue false

Inversion Domain Boundary Dislocations in Heteroepitaxial Films

Published online by Cambridge University Press:  26 February 2011

T. T. Cheng
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
P. Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
F. Ernst
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, U.S.A.
Get access

Abstract

Transmission electron microscope (TEM) images of inversion domain boundaries (IDB) show fringe contrast, thus indicating a relative displacement between the two adjoining domains. When the IDBs are facetted, different facets may have different displacement fault vectors. This implies that when the facetting changes from one plane to another, there should be a dislocation at the intersection of the planes. This is termed an “inversion domain boundary dislocation” and it will have a Burgers vector b=R1–R2 where R1, and R2 are the fault vectors of the two facets. Experimental results for facetted IDBs and IDB dislocations in SiC grown heteroepitaxially on (001) silicon are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Patel, J. R., Freeland, P. E., Hybertsen, M. S., Jacobson, D. C., and Golovchenko, J. A., Phys. Rev. Lett. 59, 2180 (1987).Google Scholar
[2] Neave, J. H., Larsen, P. K., Joyce, B. A., Gowers, J. P., and van der Veen, J. F., J. Vac. Sci. Technol. B1, 668 (1983).Google Scholar
[3] Pirouz, P., Chorey, C., and Powell, J., Appl. Phys. Lett. 50, 221 (1987).Google Scholar
[4] Pond, R. C., in ‘Dislocations and Properties of Real Materials’, The Institute of Metals, London, p. 71, (1985).Google Scholar
[5] Holt, D. B., J. Phys. Chem. Solids, 30, 1297 (1969).Google Scholar
[6] Cho, N.-H., De Cooman, B. C., Carter, C. B., Fletcher, R., and Wagner, D. K., Appl. Phys. Lett. 47, 879 (1985).Google Scholar
[7] Lambrecht, W. R. L. and Tgall, B., Mat. Res. Soc. Symp. Proc. (1988). In press.Google Scholar
[8] Pirouz, P., Chorey, C. M., Cheng, T. T., and Powell, J. A., Mat. Res. Soc. Symp. Proc. 91, 399 (1987).Google Scholar
[9] Glass, J. T.,Wang, Y. C., Kong, H. S., and Davis, R. F., Mat. Res. Soc. Symp. Proc., 116, (1988). In press.Google Scholar
[10] Cho, N.-H., McKernan, S., Carter, C. B., De Cooman, B. C., and Wagner, K., Mat. Res. Soc. Symp. Proc., 91, 161 (1987).Google Scholar
[11] Rasmussen, D. R., Cho, N.-H., and Carter, C. B., Proc. 46th Annual Meeting of the EMSA, Ed. Bailey, G. W., San Francisco Press, Inc., 600 (1988).Google Scholar
[12] Head, A. K., Humble, P., Clarebrough, L. M., Morton, A. J., and Forwood, C. T., “Computed Electron Micrographs and Defect Identification”, North-Holland Publishing Co. (1972).Google Scholar