Published online by Cambridge University Press: 25 February 2011
A study was performed on polycrystalline copper versus that of Si(100) utilizing a negative substrate bias to enhance diamond nucleation. The biasing pretreatment and subsequent growth of the diamond were performed via microwave plasma chemical vapor deposition and the initial stages of nucleation were characterized by in-vacuo surface analysis. The biasing pretreatment step proved to have a tremendous influence on the nucleation density pertaining to Si(100) substrates, however, the nucleation density on polycrystalline copper was only increased slightly. A highly graphitic surface coverage of roughly 10A was evident on the copper substrates prior to the detection of diamond and was quite stable in thickness in as early as 15 minutes of biasing. The Si(100) substrates, however, were characterized by the formation of a carbide with some form of nondiamond carbon present on the surface throughout the biasing pretreatment.