Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:54:01.041Z Has data issue: false hasContentIssue false

Intrinsically Localized Modes in Uranium and the Prospect for Finding them in Plutonium

Published online by Cambridge University Press:  01 February 2011

Michael Manley*
Affiliation:
[email protected], Lawrence Livermore National Laboratory, Materials Science and Technology Division, PO Box 808, Mailstop L-356, Livermore, CA, 94550, United States, 925 424 6927
Get access

Abstract

Dynamic nonlinear localization, an emerging new area of materials physics, has the potential to fundamentally change our understanding of materials properties. These intrinsically localized modes (ILM) have been found forming in uranium above about 450 K. Comparisons with data from the literature shows that these ILMs influence many properties, including heat capacity, thermal transport, thermal expansion, and mechanical deformation. The existence of ILMs helps to explain many anomalies in uranium, some of which have been known for more than fifty years. Here, the possibility that ILMs may also play a role in the properties of plutonium is considered. The mechanism helps to explain the success of an “Invar-like” two-level model for the thermal expansion of Pu without the need to invoke local magnetic states, which have been ruled out experimentally. It also helps to explain an excitation observed in δ-plutonium that has energy consistent with the two-level model, but momentum dependence consistent with lattice vibrations. This excitation, energy and momentum dependence, is consistent with the non-equilibrium generation of ILMs and the thermal excitation properties of these ILMs are consistent with a two-level model. High-temperature inelastic x-rays scattering measurements of the phonon dispersion curves of δ-plutonium are needed to test this hypothesis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Maradudin, A. A., Montroll, E. W., Weiss, G. H., Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1963).Google Scholar
[2] Doglov, A. S., Sov. Phys. Solid State 28, 907 (1986).Google Scholar
[3] Sievers, A. J. and Takeno, S., Phys. Rev. Lett. 61, 970 (1988).Google Scholar
[4] Flach, S., Willis, C. R., Phys. Rep. 295, 182264 (1998).10.1016/S0370-1573(97)00068-9Google Scholar
[5] Campbell, D. K., Flach, S., and Kivshar, Y. S., Phys. Today 57, 43 (2004).Google Scholar
[6] Rossler, T., Page, J. B., Phys. Rev. B 51, 11 382 (1995).Google Scholar
[7] Wang, W. Z., Gammel, J. T., Bishop, A. R., Salkola, M. I., Phys. Rev. Lett. 76, 3598 (1996).Google Scholar
[8] Swanson, B. I., Brozik, J.A., Love, S.P., Strouse, G. F., Shreve, A. P., Bishop, A. R., Wang, W.-Z., Salkola, M. I., Phys. Rev. Lett. 82, 32883291 (1999); E. Trias, J. J. Mazo, T. P. Orlando, Phys. Rev. Lett. 84, 741-744 (2000).Google Scholar
[9] Markovich, T., Polturak, E., Bossy, J., Farhi, E., Phys. Rev. Lett. 88, 195301 (2002).Google Scholar
[10] Austin, R. H., Xie, A. H., Meer, L. van der, Shinn, M., and Neil, G., J. Phys.: Cond. Matter 15, S1693 (2003).Google Scholar
[11] Edler, J. and Hamm, P., Phys. Rev. B 69, 214301 (2004).Google Scholar
[12] Manley, M. E., Yethiraj, M., Sinn, H., Volz, H. M., Alatas, A., Lashley, J. C., Hults, W. L., Lander, G. H., Smith, J. L., Phys. Rev. Lett. 96, 125501 (2006). Focus story: http://focus.aps.org/story/v17/st1110.1103/PhysRevLett.96.125501Google Scholar
[13] R. Taplin, D. M. and Martin, J. W., J. Nucl. Mater. 10, 134 (1963).Google Scholar
[14] Holden, A. N., Physical Metallurgy of Uranium (Addison-Wesley Publishing, Reading, Massachusetts, U.S.A., 1958) p. 4555.Google Scholar
[15] Chang, C. W., Okawa, D., Majumdar, A., Zettl, A., Science 314, 11211124 (2006).10.1126/science.1132898Google Scholar
[16] Lloyd, L. T. and Barrett, C. S., J. Nucl. Mat. 18, 55 (1966).Google Scholar
[17] Kiselev, S. A. and Sievers, A. J., Phys. Rev. B 55, 5755 (1997). Online animations: http://www.lassp.cornell.edu/~sievers/ilm/igm3d/index.htmlGoogle Scholar
[18] Manley, M. E., Lynn, J. W., Chen, Y., Lander, G. H., Phys. Rev. B 77, 052301 (2008).Google Scholar
[19] Axe, J. D. and Shirane, G., Phys. Today 26, 32 (1973).10.1063/1.3128230Google Scholar
[20] Aptekar, I. L.. and Ponyatovskii, E. G., Fiz. Met. Metalloved. 25, 777 (1968).Google Scholar
[21] Cooper, B. R., A possible model for ä-plutonium.self-induced Anderson localization, ä-phase stability, and the melting temperature of plutonium, in Challenges in Plutonium Science, Los Alamos Science, Vol. 26, edited by Cooper, N.G. (Los Alamos National Laboratory, Los Alamos, NM), pp. 154167. Available online at: http://www.fas.org/sgp/othergov/doe/lanl/pubs/number26.htmGoogle Scholar
[22] Lawson, A. C., Roberts, J. A., Martinez, B., Ramos, M., Kotliar, G., Trouw, F. W., Fitzsimmons, M. R., Hehlen, M. P., Lashley, J. C., Ledbetter, H., McQueeney, R. J. and Migliori, A., Phil. Mag. 86, 11 (2006).Google Scholar
[23] Weiss, R.J., Proc. Phys. Soc. 62, 28 (1963).Google Scholar
[24] Lashley, J. C., Lawson, A., McQueeney, R. J., and Lander, G. H., Phys. Rev. B 72, 054416 (2005).Google Scholar
[25] Manley, M. E., Fultz, B., McQueeney, R. J., Brown, C. M., Hults, W. L., Smith, J. L., Thoma, D. J., Osborn, R., and Robertson, J. L., Phys. Rev. Lett. 86, 3076 (2001).Google Scholar
[26] Lawson, A. C., Martinez, B., Roberts, J. A., Bennett, B. I., and Richardson, J. W. Jr., Philos. Mag. B 80, 53 (2000).Google Scholar