Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T00:33:26.459Z Has data issue: false hasContentIssue false

The intrinsic free carrier mobility in AlGaN/GaN quantum wells

Published online by Cambridge University Press:  01 February 2011

F. Carosella
Affiliation:
Université des Sciences et Technologies de Lille, CNRS UMR 8008, Bât C6, 59655 Villeneuve d'Ascq Cedex, France
M. Germain
Affiliation:
IMEC, Microsystems, Components and Packaging, Kapeldreef, 75, B-3000 Leuven, Belgium.
J.-L. Farvacque
Affiliation:
Université des Sciences et Technologies de Lille, CNRS UMR 8008, Bât C6, 59655 Villeneuve d'Ascq Cedex, France
Get access

Abstract

The aim of this contribution is to determine theoretically the maximum mobility that can be expected in AlGaN/GaN quantum wells as soon as the free carriers are only submitted to intrinsic scattering mechanisms associated with phonons and the carrier-carrier interaction. In our model, we consider that the carrier-carrier two bodies collisions do not constitute by themselves a relaxation mechanism since they conserve the momentum and the energy of the electron system. Thus, we assume that the free carriers act only through their contribution to the dynamical dielectric response of the material and, at least, through their collective behavior resulting into plasmons which, when damped, constitute now a real relaxation mechanism. The full scattering strength is connected with the imaginary part of the total reversed dielectric function including the lattice and the free carrier contributions. This approach automatically includes the scattering mechanisms associated with hybrid phonon/plasmon particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bernardini, F., Fiorentini, V. and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997)Google Scholar
2. Smorchkova, I.P., Elsaas, C.R., Ibbetson, J.P., Vetury, R., Heying, B., Fini, P.T., Haus, E., DenBaars, S.P., Speck, J.S. and Mishra, U.K., J. Appl. Phys. 86, 4520 (1999)Google Scholar
3. Garrido, J.A., Sanchez-Rojas, J.L., Jiménez, A., Munoz, E., Omnes, F. and Gibart, P., Appl. Phys. Lett. 75, 2407 (1999)Google Scholar
4. Ibbetson, J.P., Fini, P.T., Ness, K.D., DenBaars, S.P., Speck, J.S. and Mishra, U.K., Appl. Phys. Lett. 77, 250 (2000)Google Scholar
5. Ridley, B.K., Ambacher, O. and Eastman, L., Semicon. Sci. Technol 15, 270 (2000)Google Scholar
6. Ambacher, O., Foutz, B., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Sierakowski, A.J., Schaff, W.J., Eastman, L.F., Dimitrov, R., Mitcell, A. and Stutzmann, M., J. Appl. Phys. 87, 334 (2000)Google Scholar
7. Bougrioua, Z., Farvacque, J.-L., Moerman, I. and Carosella, F., phys. stat. sol. (b) 228, 625 (2001)Google Scholar
8. Farvacque, J-L. and Bougrioua, Z., Phys. Rev. B 68, 35335 (2003)Google Scholar
9. Born, M. and Huang, K., The Dynamical Theory of Crystal lattices, (Clarendon Press, Oxford, 1956)Google Scholar
10. Stimets, R.W. and Lax, B., Phys. Rev. B, 1, 4720, 1970 Google Scholar
11. Lindhard, J., Danske Videnskab, Kgl.. Selskab, , Mat. Fys. Medd. 28, 8 (1954)Google Scholar
12. Kim, M.E., Das, A. and Senturia, S.D., Phys. Rev. B, 18, 6890, 1978 Google Scholar
13. Varga, B.B., Phys. Rev. 137, A1896, 1965 Google Scholar
14. Farvacque, J-L., Phys. Rev. B 67, 195324 (2003)Google Scholar
15. Farvacque, J-L. and Carosella, F. to be publishedGoogle Scholar