Published online by Cambridge University Press: 10 February 2011
Under acidic sol-gel polymerization conditions, 1,3-bis(triethoxysilyl)-propane 1 and 1,4-bis(triethoxysilyl)butane 2 were shown to preferentially form cyclic disilsesquioxanes 3 and 4 rather than the expected 1,3-propylene- and 1,4-butylene-bridged polysilsesquioxane gels. Formation of 3 and 4 is driven by a combination of an intramolecular cyclization to six and seven membered rings, and a pronounced reduction in reactivity under acidic conditions as a function of increasing degree of condensation. The ease with which these relatively unreactive cyclic monomers and dimers are formed (under acidic conditions) helps to explain the difficulties in forming gels from 1 and 2. The stability of cyclic disilsesquioxanes was confirmed with the synthesis of 3 and 4 in gram quantities; the cyclic disilsesquioxanes react slowly to give tricyclic dimers containing a thermodynamically stable eight membered siloxane ring. Continued reactions were shown to perserve the cyclic structure, opening up the possiblity of utilizing cyclic disilsesquioxanes as sol-gel monomers. Preliminary polymerization studies with these new, carbohydrate-like monomers revealed the formation of network poly(cyclic disilsesquioxanes) under acidic conditions and polymerization with ring-opening under basic conditions.