Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:46:15.518Z Has data issue: false hasContentIssue false

Intra-magnetoexciton transitions in semiconductor quantum wells

Published online by Cambridge University Press:  21 March 2011

Z. Barticevic
Affiliation:
Depto. de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
M. Pacheco
Affiliation:
Depto. de Física, Universidad de Santiago de Chile, Casilla 307, Santiago, Chile
C. A. Duque
Affiliation:
Depto de Física, Universidad de Antioquia, AA 1226, Medellín, Colombia
L. E. Oliveira
Affiliation:
Instituto de Física, Univ. Estadual de Campinas - Unicamp, CP 6165, Campinas-SP, Brazil
Get access

Abstract

Highly sensitive optically detected resonance experiments have shown that magnetoexcitons in GaAs-(Ga,Al)As semiconductor quantum wells have discrete internal energy levels, with transition energies found in the far-infrared (terahertz) region. Here we are concerned with a theoretical study of the terahertz transitions of light-hole and heavy-hole confined magnetoexcitons in GaAs-(Ga,Al)As quantum wells, under a magnetic field applied in the growth direction of the semiconductor heterostructure. The various magnetoexciton states are obtained in the effective-mass approximation by expanding the corresponding exciton-envelope wave functions in terms of appropriate Gaussian functions. The electron and hole cyclotron resonances and intra-magnetoexciton transitions are theoretically studied by exciting the allowed electron, hole and internal magnetoexcitonic transitions with far-infrared radiation. Theoretical results are obtained for both the intra-magnetoexciton transition energies and oscillator strengths associated with excitations from 1s - like to 2s, 2p±, and 3p±- like magnetoexciton states, and from 2p- to 2s – like exciton states. Present results are in overall agreement with available optically detected resonance measurements and clarifies a number of queries in previous theoretical work.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Salib, M. S., Nickel, H. A., Herold, G. S., Petrou, A., McCombe, B. D., Chen, R., Bajaj, K. K., and Schaff, W., Phys. Rev. Lett. 77, 1135 (1996).Google Scholar
2. Cerne, J., Kono, J., Sherwin, M. S., Sundaram, M., Gossard, A. C., and Bauer, G. E. W., Phys. Rev. Lett. 77, 1131 (1996); J. Kono, M. Y. Su, J. Cerne, M. S. Sherwin, S. J. Allen, Jr., T. Inoshita, T. Noda, and H. Sakaki, Physica B 249–251, 527 (1998).Google Scholar
3. Nickel, H. A., Herold, G. S., Salib, M. S., Kioseoglou, G., Petrou, A., McCombe, B. D., and Broido, D., Physica B 249–251, 598 (1998); H. A. Nickel, G. S. Herold, T. Yeo, G. Kioseoglou, Z. X. Jiang, B. D. McCombe, A. Petrou, D. Broido, and W. Schaff, Phys. Stat. Sol. (b) 210, 341 (1998); H. A. Nickel, G. Kioseoglou, T. Yeo, H. D. Cheong, A. Petrou, B. D. McCombe, D. Broido, K. K. Bajaj, and R. A. Lewis, Phys. Rev. B 62, 2773 (2000).Google Scholar
4. Duque, C. A., Beltrán, C. L., Montes, A., Porras-Montenegro, N., and Oliveira, L. E., Phys. Rev. B 61, 9936 (2000).Google Scholar
5. Luttinger, J. M., Phys. Rev. 102, 1030 (1956); G. E. W. Bauer and T. Ando, Phys. Rev. B 38, 6015 (1988).Google Scholar
6. Bastard, G., Mendez, E. E., Chang, L. L., and Esaki, L., Phys. Rev. B 26, 1974 (1982); J. W. Brown and H. N. Spector, Phys. Rev. B 35, 3009 (1987).Google Scholar
7. Pacheco, M., Barticevic, Z., and Claro, F., J. Phys. C 5, A393 (1993); Z. Barticevic, M. Pacheco, and F. Claro, Phys. Rev. B 51, 14414 (1995); M. Pacheco and Z. Barticevic, J. Phys.: Condens. Matter 11, 1079 (1999).Google Scholar