Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:53:11.509Z Has data issue: false hasContentIssue false

Interstitial Impurities in Wurtzite Vs. Zincblende Semiconductors: The Case of H In SiC

Published online by Cambridge University Press:  25 February 2011

M. A. Roberson
Affiliation:
Physics Department, Texas Tech University, Lubbock, TX 79409–1051.
S. K. Estreicher
Affiliation:
Physics Department, Texas Tech University, Lubbock, TX 79409–1051.
Get access

Abstract

Most compound semiconductors crystallize in the zincblende or the wurtzite structures. In both cases, all the host atoms are tetrahedrally coordinated. However, the two lattices have no high symmetry interstitial sites in common. As a result, the stability, lowest-energy configuration, electronic structures, and barriers for diffusion of interstitial impurities are in general very different. This situation is illustrated here in the case of interstitial H in 3C (zincblende) and 2H (wurtzite) SiC. The results can be used to obtain the properties of H in other hexagonal polytypes, in particular 6H-SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schlichting, J., Czack, G., Koch-Bienemann, E., Kulin, P., and Schröder, F., in Gmelin Handbook of Inorganic Chemistry, Suppl. Vol. B2 (Silicon), ed. Kirschstein, G., Springer-Verlag (Berlin, 1984).Google Scholar
2. Pensi, G. and Ilelbig, R., Adv. Sol. St. Phys. 30, 133 (1990) (Festkörperprobleme, ed. U. Rössler, Vieweg, Braunschweig - Germany).CrossRefGoogle Scholar
3. See e.g., Matus, L. G., Powell, J. A., and Salupo, O. S., Appl. Phys. Lett. 59, 1770 (1991).Google Scholar
4. See e. g., Li, Y. and Lin-Chang, P. J., Phys. Rev. B 36, 1130 (1987);CrossRefGoogle Scholar
Wang, C., Bernholc, J., and Davis, R. F., Phys. Rev. B 38, 12752 (1988);CrossRefGoogle Scholar
Wang, C., Bernholc, J., and Davis, R.F. (preprint).Google Scholar
5. More details about these calculations can be found in Chu, C. H. and Estreicher, S. K., Phys. Rev. B 42, 9486 (1990), andCrossRefGoogle Scholar
Roberson, M. A. and Estreicher, S. K., Phys. Rev. B 44, (Nov. 15, 1991).CrossRefGoogle Scholar
6. For a discussion of cluster size efTects, see Estreicher, S. K., Ray, A. K., Fry, J. L., and Marynick, D. S., Phys. Rev. Lett. 55, 1976 (1985); 57, 3301 (1986);CrossRefGoogle Scholar
Estreicher, S. K., Phys. Rev. B 37, 858 (1988).CrossRefGoogle Scholar
7. Halgren, T. A. and Lipscomb, W. N., J. Chem. Phys. 58, 1569 (1973);CrossRefGoogle Scholar
Maryntck, D. S. and Lipscomb, W. N., Proc. Natl. Acad. Sci. (USA) 79, 1341 (1982). See alsoCrossRefGoogle Scholar
Halgren, T. A., Kleier, D. A., Hall, J. H., Brown, L. D., and Lipscomb, W. N., J. Am. Chem. Soc. 100, 6595 (1978);CrossRefGoogle Scholar
Marynick, D. S., in Topics in Physical Organomeialic Chemistry, ed. Gielen, M. F. (Freund, London, 1988), p. 37.Google Scholar
8. For recent reviews: Pearton, S. J., Corbett, J. W., and Shi, T. S., Appl. Phys. A 43, 153 (1987);CrossRefGoogle Scholar
Pearton, S. J., Stavola, M., and Corbett, J. W., Mat. Sci. Forum 38–41, 25 (1989);Google Scholar
Hydrogen in Semiconductors, ed. Pankove, J. I. and Johnson, N. M. (Academic, New York, 1991);Google Scholar
U. S. Doe Panel Report on Fundamental Issues in Hydrogen-Defect Interactions (Rev. Mod. Phys., in press).Google Scholar
9. Patterson, B. D., Rev. Mod. Phys. 60, 69 (1988).CrossRefGoogle Scholar
10. Symons, M. C. R., Hyp. Int. 17–19, 771 (1984);CrossRefGoogle Scholar
Cox, S. F. J. and Symons, M. C. R., Chem. Phys. Lett. 126, 516 (1986);CrossRefGoogle Scholar
Cox, S. F. J., J. Phys. C 20, 3187 (1987).CrossRefGoogle Scholar
11. For diamond and silicon: Estle, T. L., Estreicher, S. K., and Marynick, D. S., Hyp. Int. 32, 637 (1986);CrossRefGoogle Scholar
for diamond: Claxton, T. A., Evans, A., and Symons, M. C. R., J. Chem. Soc. Faraday Trans. 82, 2031 (1986):CrossRefGoogle Scholar
Estle, T. L., Estreicher, S. K., and Marynick, D. S., Phys. Rev. Lett. 58, 1547 (1987). A detailed study of H in Si, was published byCrossRefGoogle Scholar
Estreicher, S.K., Phys. Rev. B 36, 9122 (1987). A comprehensive discussion of H in 6 cubic semiconductors can be found in Ref.5. Other authors have used a variety of theoretical techniques to study H in Si:CrossRefGoogle Scholar
Deak, P., Snyder, L. C., and Corbett, J. W., Phys. Rev. B 37, 6887 (1988);CrossRefGoogle Scholar
Deak, P., Snyder, L. C., Lindstrom, J. L., Corbett, J. W., Pearton, S. J., and Tavendale, A. J., Phys. Lett. A 126, 427 (1988);CrossRefGoogle Scholar
DeLeo, G. G. and Fowler, W. B., Phys. Rev. B 38, 7520 (1988);CrossRefGoogle Scholar
Van de Walle, C. G., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. Lett. 60, 2761 (1988);CrossRefGoogle Scholar
Van de Walle, C. G., Denteneer, P. J. H., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 39, 10791 (1989);CrossRefGoogle Scholar
Chang, K. J. and Chadi, D. J., Phys. Rev. Lett. 62, 937 (1989) and Phys. Rev. B 40, 11644 (1989). The delocalization of the Mu wavefunction is discussed inCrossRefGoogle Scholar
Van de Walle, C. G., Phys. Rev. Lett. 64, 669 (1990) and inCrossRefGoogle Scholar
Marie, Dj. M., Vogel, S., Meier, P. F., and Estreicher, S. K., Hyp. Int. 64, 573 (1990).Google Scholar
12. Schneider, J. W., Baumeler, Hp., Keller, H., Kiefl, R. F., Kundig, W., Odermatt, W., Patterson, B. D., Estle, T. L., Rudaz, S. L., Blazey, K. W., and Schwab, C., Hyp. Int. 32, 607 (1986);CrossRefGoogle Scholar
Patterson, B. D., Baumeler, Hp., Keller, H., Kiefl, R. F., Kündig, W., Odermatt, W., Schneider, J. W., Choyke, W. J., Estle, T. L., Spencer, D. P., Blazey, K. W., and Savie, I. M., Hyp. Int. 32, 625 (1986).CrossRefGoogle Scholar
13. This assignment was suggested to us by Estle, T.L..Google Scholar