Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:39:26.023Z Has data issue: false hasContentIssue false

Interplay Between Surface Chemistry and Optical Behavior of Semiconductor-biomolecule Functionalized Sensing Systems: An Optical Investigation by Spectroscopic Ellipsometry

Published online by Cambridge University Press:  01 February 2011

Maria Losurdo
Affiliation:
[email protected]@yahoo.it, United States
Scott D Wolters
Affiliation:
[email protected], Duke University, ECE, Durham, North Carolina, United States
Maria M Giangregorio
Affiliation:
[email protected], CNR-IMIP, Plasmachemistry, Bari, Italy
Fabiana Lisco
Affiliation:
[email protected], CNR-IMIP, Plasmachemistry, Bari, Italy
Michael Angelo
Affiliation:
[email protected], Duke University, ECE, Durham, North Carolina, United States
William Lampert
Affiliation:
[email protected], 3U.S. Army Research Office, Research Triangle Park, North Carolina, United States
Giovanni Bruno
Affiliation:
[email protected], CNR-IMIP, Plasmachemistry, Bari, Italy
April Brown
Affiliation:
[email protected], Duke University, ECE, Durham, North Carolina, United States
Get access

Abstract

Chemical functionalization of bio-molecules, including hemin (an iron porphyrin) and bovine albumin onto Si (100) and GaAs (100) surfaces is reported. Spectroscopic ellipsometry analysis on the optical response of functionalized surfaces provides information on molecular coverage and effective thickness as well as the kinetics of surface attachment. Topographic features of the chemically functionalized surfaces are investigated by atomic force microscopy

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cross, G.H., Reeves, A.A., Brand, S., Popplewell, J.F., Peel, L.L., Swann, M.J., Freeman, N.J., Biosens. Bioelectron. 19, 383 (2003).Google Scholar
2. Gulino, A., Mineo, P., Scamporrino, E., Vitalini, D., Fragalà, I., Chem. Mater. 16, 1838 (2004).Google Scholar
3. Wu, D. G., Cahen, D., Graf, P., Naaman, R., Nitzan, A., and Shvarts, D., Chem.-Eur. J. 7, 1743 (2001).Google Scholar
4. Garcia, M.A., Losurdo, M., Wolter, S.D., Kim, T.H., Lampert, W.V., Bonavetura, J., Bruno, G., Giangregorio, M.M., Brown, A. J. Vac. Sci. Technol. B 25, 1504 (2007).Google Scholar
5. Garcia, M. A., Losurdo, M., Wolter, S. D., Lampert, W. V., Bonaventura, J., Bruno, G., Yi, C., and Brown, A. S. Sensor Lett. 6, 627634 (2008).Google Scholar
6. Sagara, T., Murase, H., Komatsu, M., and Nakashima, N., Appl. Spectrosc. 54, 316 (2000).Google Scholar
7. Hacker, C.A., Anderson, K.A., Richter, L.J., Richter, C.A., Langmuir, 21, 882 (2005).Google Scholar
8. Eves, B.J., Sun, Q.Y., Lopinski, G.P., Zuilhof, H., J. Am. Chem. Soc. 126, 14318 (2004).Google Scholar
9. Gergel-Hackett, N., Zangmeister, C.D., Hacker, C.A., Richter, L.J., Richter, C.A., J. Am. Chem. Soc. 130, 4259 (2008).Google Scholar
10. Lautenschlager, P., Garriga, M., Vina, L., Cardona, L. M., Phys. Rev. B 36, 4821 (1987).Google Scholar
11. Laidler, K. J., Chemical KineticsMcGraw-Hill, New York, 1965, p. 316.Google Scholar
12. Ma, S.M., Coleman, D.L., Andrade, J.D., Surface Science 56 (1976) 117125.Google Scholar
13. Urano, H., Fukuzaki, S., J. Fermentation and Bioengineering 83, 261 (1997). H. Arwin Applied Spectroscopy 40, 313, 1986Google Scholar