Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:27:12.212Z Has data issue: false hasContentIssue false

Interplay between Morphology and Surface Transport in Nanopatterns Produced by Ion-Beam Sputtering

Published online by Cambridge University Press:  01 February 2011

Rodolfo Cuerno
Affiliation:
[email protected], Universidad Carlos III de Madrid, Departamento de Matemáticas, Avenida de la Universidad 30, Leganés (Madrid), 28911, Spain, +34916245944, +34916249129
Javier Muñoz-García
Affiliation:
[email protected], Universidad de Castilla la Mancha, Departamento de Matemáticas and GISC, Ciudad Real, E-13071, Spain
Mario Castro
Affiliation:
[email protected], Universidad Pontificia Comillas de Madrid, Escuela Técnica Superior de Ingeniería (ICAI) and GISC, Madrid, E-28015, Spain
Raúl Gago
Affiliation:
[email protected], Universidad Autónoma de Madrid, Centro de Microanálisis de Materiales, Madrid, E-28049, Spain
Luis Vázquez
Affiliation:
[email protected], Consejo Superior de Investigaciones Científicas, Instituto de Ciencia de Materiales de Madrid, Madrid, E-28049, Spain
Get access

Abstract

A “hydrodynamic” model has been proposed to describe nanopattern formation and dynamics on amorphous surfaces eroded by ion-beam sputtering (IBS), that relates to descriptions of pattern formation in macroscopic systems such as aeolian sand dunes. At variance with previous continuum models of the morphology of ion-sputtered surfaces, the dynamics of the species that diffuse along the surface is coupled in a natural way to that of the surface height. We report recent results for this model, considering normal and oblique ion incidence, for both fixed and rotating targets, and include comparison to recent experiments on silicon. Effective interface equations can be obtained, that generalize the anisotropic Kuramoto-Sivashinshy equation through additional conserved Kardar-Parisi-Zhang type nonlinear terms. In general dot or ripple patterns form, that later evolve exhibiting complex nonlinear dynamics. Thus, we observe interrupted coarsening behavior such that, for normal incidence, domains of hexagonally ordered structures appear, that compare favorably with those obtained in many experiments of nanodot formation by IBS. In other parameter regions, this short-range ordered patterns coexist with long range disorder and kinetic roughening. For oblique incidence, a ripple pattern is generically obtained that also shows interrupted coarsening and other nonlinear features like non-uniform transverse motion, again reproducing experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Valbusa, U., Boragno, C. and Mongeot, F. Buatier de, J. Phys: Condensed Matter 14, 8153 (2002).Google Scholar
2. Chan, W. L. and Chason, E., J. Appl. Phys. 101, 121301 (2007).Google Scholar
3. Muñoz-García, J., Vázquez, L., Cuerno, R., JSánchez-García, . A., Castro, M. and Gago, R., “Self-organized surface nanopatterning by ion beam sputtering,” Lecture Notes on Nanoscale Science and Technology (Springer, in press. arXiv:0706.2625v1).Google Scholar
4. Cuerno, R., Castro, M., Muñoz-García, J., Gago, R. and Vázquez, L., Eur. Phys. J. Special Topics 146, 427 (2007).Google Scholar
5. Sigmund, P., J. Mat. Sci. 8, 1545 (1973).Google Scholar
6. Chen, H. H., Urquidez, O. A., Ichim, S., Rodriguez, L. H., Brenner, M. P. and Aziz, M. J., Science 310 294 (2005).Google Scholar
7. Feix, M., Hartmann, A. K., Kree, R., Muñoz-García, J. and Cuerno, R., Phys. Rev. B71, 125407 (2005).Google Scholar
8. Bradley, R. M. and Harper, J. M. E., J. Vac. Sci. Technol. A6, 2390 (1988).Google Scholar
9. Mullins, W. W., J. Appl. Phys. 28, 333 (1957).Google Scholar
10. Chason, E., Mayer, T. M., Kellerman, B. K., McIlroy, D. T. and Howard, A. J., Phys. Rev. Lett. 72, 3040 (1994).Google Scholar
11. Cirlin, E.-H., Vajo, J. J., Doty, R. E. and Hasenberg, T. C., J. Vac. Sci. Technol. A9 1395 (1991).Google Scholar
12. Bradley, R. M., Phys. Rev. E54, 6149 (1996).Google Scholar
13. Carter, G. and Vishnyakov, V., Phys. Rev. B54, 17647 (1996).Google Scholar
14. Cuerno, R. and Barabási, A.-L., Phys. Rev. Lett. 74, 4746 (1995).Google Scholar
15. Makeev, M. A. and Barabási, A.-L., Appl. Phys. Lett. 71, 2800 (1997).Google Scholar
16. Makeev, M. A., Cuerno, R. and Barabási, A.-L., Nucl. Instrum. Meth. B97, 185 (2002).Google Scholar
17. Rost, M. and Krug, J., Phys. Rev. Lett. 75, 3894 (2005).Google Scholar
18. Kahng, B., Jeong, H. and Barabási, A.-L., Appl. Phys. Lett. 78, 805 (2001).Google Scholar
19. Kim, T. C., Ghim, C.-M., Kim, H. J., Kim, D. H., Noh, D. Y., Kim, N. D., Chung, J. W., Yang, J. S., Chang, Y. J., Noh, T. W., Kahng, B. and Kim, J.-S., Phys. Rev. Lett. 92, 246104 (2004).Google Scholar
20. Castro, M. and Cuerno, R., Phys. Rev. Lett. 94, 139601 (2005).Google Scholar
21. Kim, T. C., Ghim, C.-M., Kim, H. J., Kim, D. H., Noh, D. Y., Kim, N. D., Chung, J. W., Yang, J. S., Chang, Y. J., Noh, T. W., Kahng, B. and Kim, J.-S., Phys. Rev. Lett. 94, 139602 (2005).Google Scholar
22. Paniconi, M. and Elder, K. R., Phys. Rev. E56, 2713 (1997).Google Scholar
23. Facsko, S., Bobek, T., Stahl, A., Kurz, H. and Dekorsy, T., Phys. Rev. B69, 153412 (2004).Google Scholar
24. Vogel, S. and Linz, S. J., Phys. Rev. B72, 035416 (2005).Google Scholar
25. S, S. Vogel and Linz, S. J., Europhys. Lett. 76, 884 (2006).Google Scholar
26. Castro, M., Muñoz-García, J., Cuerno, R., García-Hernández, M. and Vázquez, L., New J.Phys. 9, 102 (2007).Google Scholar
27. Ziberi, B., Frost, F. and Rauschenbach, B., Surf. Sci. 600, 3757 (2006).Google Scholar
28. Chason, E., Erlebacher, J., Aziz, M. J., Floro, J. A. and Sinclair, M. B., Nucl. Instrum. Meth. B178, 55 (2001).Google Scholar
29. Alkemade, P. F. A., Phys. Rev. Lett. 96, 107602 (2006).Google Scholar
30. Csahòk, Z., Misbah, C., Rioual, F. and Valance, A., Eur. Phys. J. E3, 71 (2000).Google Scholar
31. Aste, T. and Valbusa, U., Physica A332, 548 (2004).Google Scholar
32. Aste, T. and Valbusa, U., New. J. Phys. 7 122 (2005).Google Scholar
33. Castro, M., Cuerno, R., Vázquez, L. and Gago, R., Phys. Rev. Lett. 94, 016102 (2005).Google Scholar
34. Muñoz-García, J., Castro, M. and Cuerno, R., Phys. Rev. Lett. 96, 086101 (2006).Google Scholar
35. Moore, M. C., Kalyanasundaram, N., Freund, J. B. and Johnson, H. T., Nucl. Instrum. Meth. B225, 241 (2004).Google Scholar
36. Umbach, C. C., Headrick, R. L. and Chang, K., Phys Rev Lett 87, 246104 (2001).Google Scholar
37. Muñoz-García, J., Cuerno, R. and Castro, M., preprint (2007).Google Scholar
38. Flamm, D., Frost, F. and Hirsch, D., Appl. Surf. Sci. 179, 95 (2001).Google Scholar
39. Muñoz-García, J., Cuerno, R. and Castro, M., Phys. Rev. E74, 050103(R) (2006).Google Scholar
40. Habenicht, S., Lieb, K. P., Koch, J. and Wieck, A. D., Phys. Rev. B65, 115327 (2002).Google Scholar
41. Raible, M., Mayr, S. G., Linz, S. J., Moske, M., Hänggi, P. and Samwer, K., Europhys. Lett. 50,61 (2000).Google Scholar
42. Gago, R., Vázquez, L., Plantevin, O., Metzger, T. H., Muñoz-García, J., Cuerno, R. and Castro, M., Appl. Phys. Lett. 89, 233101 (2006).Google Scholar