Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:23:52.470Z Has data issue: false hasContentIssue false

Interplay Between Electronic Transport and Magnetic Order in Ferromagnetic Manganite Thin Films

Published online by Cambridge University Press:  15 February 2011

M. R. Hundley
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
J. J. Neumeier
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
R. H. Heffher
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Q. X. Jia
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
X. D. Wu
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
J. D. Thompson
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

The transition metal oxides La1-xAxMnO3 (A = Ba, Ca, or Sr) order ferromagnetically with Curie temperatures ranging from as low as 50 K to well above room temperature. Magnetic order in these compounds results in a concomitant metal-insulator transition. The feature displayed by the manganites that is most important technologically is the extremely large negative magnetoresistance that achieves its largest values near the magnetic ordering temperature. Qualitatively, this colossal magnetoresistance (CMR) phenomenon involves the suppression of the relatively sharp maximum in the resistivity that is centered at Tc. When considered collectively, the anomalous temperature-dependent transport properties, the CMR effect, and the magnetically ordered ground state indicate that a novel interplay between magnetism and electronic transport occurs in the manganites. General features of the magnetic-field and temperature-dependent electrical resistivity and magnetization as displayed by PLD-grown thin films are examined. Particular emphasis is placed on what these measurements tell us about the conduction process both above and below the magnetic ordering temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonker, G.H. and Van Santen, J.H., Physica 16, 337 (1950); 16, 599 (1950).Google Scholar
2. Wollan, E.O. and Koehler, W.C., Phys. Rev. 100, 545 (1955).Google Scholar
3. Volger, J., Physica 20, 49 (1954).Google Scholar
4. Zener, C., Phys. Rev. 82, 403 (1951);Google Scholar
Anderson, P.W. and Hasegawa, H., Phys. Rev. 100, 675 (1955);Google Scholar
deGennes, P.G., Phys. Rev. 118, 1412 (1960).Google Scholar
5. Kusters, R.M., Singleton, J., Keen, D.A., McGreevy, R., and Hayes, W., Physica C 155, 362 (1989);Google Scholar
Chahara, K., Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993).Google Scholar
6. von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., Phys. Rev. Lett. 71, 2331(1993).Google Scholar
7. Millis, A.J., Littlewood, P.B., and Shraiman, B.I., Phys. Rev. Lett. 75, 5144 (1995).Google Scholar
8. Roder, H., Zang, J., and Bishop, A.R., Phys. Rev. Lett. 76, 1356 (1996);Google Scholar
Millis, A.J., Phys. Rev. B 53, 8434 (1996);Google Scholar
Emin, D., Hillery, M.S., and Liu, Nih Phys. Rev. B 35, 641 (1987).Google Scholar
9. Hundley, M.F., Hawley, M., Hefneer, R.H., Jia, Q.X., Neumeier, J.J., Tesmer, J., Thompson, J.D., and Wu, X. D., Appl. Phys. Lett. 67, 860 (1995).Google Scholar
10. Heffner, R.H., Le, L.P., Hundley, M.F., Neumeier, J.J., Luke, G.M., Kojima, K., Nachumi, B., Uemura, Y.J., MacLaughlin, D.E., and Cheong, S-W., Phys. Rev. Lett. 77, 1869 (1996).Google Scholar
11. Hundley, M.F., Neumeier, J.J., Heffher, R.H., Jia, Q.X., Wu, X.D., and Thompson, J.D., J. Appl. Phys. 79, 4535 (1996).Google Scholar
12. Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science 264, 413 (1994).Google Scholar
13. Ju, H.L., Kwon, C, Li, Q., Greene, R.L., and Venkatesan, T., Appl. Phys. Lett. 65, 108 (1994).Google Scholar
14. Jaime, M., Salamon, M.B., Rubinstein, M., Treece, R.E., Horwitz, J.S., and Chrisey, D.B., Phys. Rev. B 54, 11914(1996).Google Scholar
15. Jaime, M., Hardner, H.T., Salamon, M.B., Rubinstein, M., Dorsey, P., and Emin, D., Phys. Rev. Lett. 78, 951 (1997);Google Scholar
Hundley, M.F. and Neumeier, J.J., Phys. Rev. B (in press).Google Scholar
16. Crespi, V.H., Lu, L., Jia, Y.X., Khazeni, K., Zettl, A., and Cohen, M.L., Phys. Rev. B 53, 14303 (1996).Google Scholar
17. Ju, H.L., Gopalakrishnan, J., Peng, J.L., Li, Qi, Xiong, G.C., Venkatesan, T., and Greene, R.L., Phys. Rev. B 51, 6143 (1995);Google Scholar
Hwang, H.Y., Cheong, S-W., Ong, N.P., and Batlogg, B., Phys. Rev. Lett. 77, 2041 (1996).Google Scholar
18. Sun, J.Z., Krusin-Elbaum, L., Parkin, S.S.P., and Xiao, Gang, Appl. Phys. Lett. 67, 2726 (1995);Google Scholar
Chen, B.X., Uher, C., Morelli, D.T., Mantese, J.V., Mance, A.M., and Micheli, A.L., Phys. Rev. B 53, 5094 (1996);Google Scholar
Martinez, B., Fontcuberta, J., Seffar, A., Garcia-muñoz, J.L., Pinol, S., and Obradors, X., Phys. Rev. B 54, 10001 (1996).Google Scholar
19. Austin, I.G. and Mott, N.F., Adv. Phys. 18, 41 (1969);Google Scholar
Mott, N.F. and Davis, E.A., Electronic Processes in Noncrystalline Materials (Oxford, Clarendon Press, 1979);Google Scholar
Emin, D., Electronic and Structural Properties of Amorphous Semiconductors, edited by Le Comber, P.G. and Mort, J. (Academic Press, London, 1973) p. 261.Google Scholar
20. Okimoto, Y., Katsuruji, T., Ishikawa, T., Urushibara, A., Arima, T., and Tokura, Y., Phys. Rev. Lett. 75, 109(1995).Google Scholar
21. Kasuya, T., Yanase, A., and Takeda, T., Solid State Commun. 8, 1551 (1970);Google Scholar
Emin, D., Phys. Rev. B 48, 13691 (1993).Google Scholar
22. Lb, S.J.L., Difrancesco, R.G., Kwei, G.H., Neumeier, J.J., and Thompson, J.D., Phys. Rev. Lett. 77, 715(1996).Google Scholar