Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T22:24:18.070Z Has data issue: false hasContentIssue false

Internal Friction in Ion-Implanted Silicon

Published online by Cambridge University Press:  15 February 2011

Xiao Liu
Affiliation:
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853–2501, [email protected]
R. O. Pohl
Affiliation:
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853–2501, [email protected]
Richard S. Crandall
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, [email protected]
K. M. Jones
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, [email protected]
Get access

Abstract

Using a double-paddle oscillator, we have studied the internal friction of thin Si layers which have been disordered by ion implantation. We have identified the temperature-independent internal friction common to all amorphous solids below 10K, and also a narrow relaxation peak at ∼ 48K. This peak has been shown to be caused by divacancies in the damaged crystalline region underneath the amorphous layer. Thermal, rapid thermal, and laser-flash annealing have been compared. The minimum disorder is left after rapid thermal annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Caturla, M.-J., Diaz de la Rubia, T., Marques, L.A., Gilmer, G.H., to appear in Phys. Rev. B;Google Scholar
Jaraiz, M., Gilmer, G.H., Poate, J.M., de La Rubia, T.D., Appl. Phys. Lett. 68, 409 (1996);Google Scholar
Diaz de la Rubia, T., Ann. Rev. Mater. Sci. 26, 613 (1996).Google Scholar
2. Eaglesham, D.J., Stolk, P.A., Gossmann, J.-J., Haynes, T.H., Poate, J.M., Nucl. Instr. and Methods in Phys. Res. B 106, 191 (1995).Google Scholar
3. Stolk, P.A., Saris, F.W., Berntsen, A.J.M., van der Weg, W.F., Sealy, L.T., Barklie, R.C., Krötz, G., Müller, G., J. App. Phys. 75, 7266 (1994).Google Scholar
4. Berry, B.S., in “Diffusion Phenomena in Thin Films and Microelectronic Materials,” edited by Gupta, D., and Ho, P.S. (Noyes, Park Ridge, NJ, 1988), p. 73.Google Scholar
5. Topp, K.A., Cahill, D.G., Z. Physik B 101, 235 (1996).Google Scholar
6. White, B.E. Jr., Pohl, R.O., Mat. Res. Symp. Proc. Vol. 356, p. 567 (1995); Phys. Rev. Lett. 75, 4437 (1995).Google Scholar
7. Liu, Xiao, Whang, Eun Joo, White, B.E. Jr., Pohl, R.O., submitted for publication.Google Scholar
8. Stein, H.J., Vook, F.L., and Borders, J.A., Appl. Phys. Lett. 14, 328 (1969).Google Scholar
9. Cheng, L.J., Vajda, P., Phys. Rev. 186, 816 (1969).Google Scholar
10. Watkins, G.D., Corbett, J.W., Phys. Rev. 138, 543 (1965).Google Scholar
11. Naranamurti, V. and Pohl, R.O., Rev. Mod. Phys. 42, 201 (1970), see eq. (42).Google Scholar
12. Cheng, L.J., Corelli, J.C., Corbett, J.W., Watkins, G.D., Phys. Rev. 152, 761 (1966).Google Scholar
13. Cox-Smith, I.R., Liang, H.C., Dillon, R.O., J. Vac. Soc. Technol. A3, 674 (1985).Google Scholar
14. Williamson, D.L., Roorda, S., Chicoine, M., Tabti, R., Stolk, P.A., Acco, S., Saris, F., Appl. Phys. Lett. 67, 226 (1996).Google Scholar
15. Roorda, S., Sinke, W.C., Poate, J.M., Jackson, D.C., Dierker, S., Dennis, B. S., Eaglesham, D.J., Spaepen, F., Fuoss, P., Phys. Rev. B 44, 3702 (1991).Google Scholar
16. Olson, G.L., Roth, J.A., Mat. Sci. Rep. 3, 1 (1988).Google Scholar
17. Mihailovich, R.E. and Parpia, J.M., Phys. Rev. Lett. 68, 3052 (1992).Google Scholar