No CrossRef data available.
Article contents
Internal Friction and Dynamic Modulus in High Temperature Ru-Nb Shape Memory Intermetallics
Published online by Cambridge University Press: 16 January 2013
Abstract
Nowadays, aeronautic and aerospace are the more demanding sectors for shape memory alloys (SMA) after the bio-medical one. In particular the interest has been recently focused on very high temperature SMA, which would be able of working as sensors and actuators in the hot areas of the engines and exaust devices.
In the present work we undertook a study of the Ru-Nb SMA Intermetallics, which undergo two succesive martensitic transformations around 1050 K and 1180 K respectively, depending on composition. This study has been focused on measurements of internal friction spectra and dynamic modulus variation up to 1700 K, which have been carried out in a sub-resonant torsion mechanical spectrometer.
The internal friction and dynamic modulus have been studied as a function of the heating-cooling rate and the frequency in order to compare experimental behaviour with theoretical models for martensitic transformations. In addition to the internal friction peaks linked to both martensitic transformations we have also observed a complex relaxation process around 950 K, which seems to be linked to the interaction of the martensite interfaces with structural defects. An analysis and discusion of the potential microscopic mechanisms are also presented.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2012