Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:38:50.824Z Has data issue: false hasContentIssue false

Intermolecular Effects on Third Order Nonlinear Optical Properties

Published online by Cambridge University Press:  25 February 2011

D. S. Dudis
Affiliation:
Polymer Branch, Wright Laboratories, Wright Patterson AFB, OH 45433–6533
A. T. Yeates
Affiliation:
Polymer Branch, Wright Laboratories, Wright Patterson AFB, OH 45433–6533
H. A. Kurtz
Affiliation:
Department of Chemistry, Memphis State University, Memphis, TN 38152
Get access

Abstract

Hartree-Fock ab initio calculations have been used to examine the magnitude of non-polar intermolecular interactions on polarizabilities and second hyperpolarizabilities. In the present case two ethylene molecules were examined in a cofacial interaction. Basis set requirements and correlation effects were considered in deriving the intermolecular potential. Two basis sets were considered for the intermolecular interactions at the Hartree-Fock level, while one set of calculations was performed with corrections for correlation. It is found that intermolecular contacts at the van der Waals distance has little effect on the molecular second hyperpolarizability, but it is not clear what the effect would be for longer oligomers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prasad, P. N. and Williams, D. J., Introduction to Nonlinear Optical Effects in Molecules and Polymers, (Wiley Interscience, New York, 1991).Google Scholar
2. Garito, A. F., Heflin, J. R., Wong, K. Y. and Zamani-Khamiri, O., in Nonlinear Optical Properties of Polymers, edited by Heeger, A. J., Orenstein, J. and Ulrich, D. R. (Materials Research Society, Pittsburgh, PA, 1988).Google Scholar
3. Kurtz, H. A., Stewart, J. J. P. and Dieter, K. M., J. Comput. Ckem., 11, 82 (1990).Google Scholar
4. Kama, S. P., Talapatra, G. B. and Prasad, P. N., submitted for publication; we thank these workers for making a preprint of their work available to us prior to publication.Google Scholar
5. Bernardi, F., Olivucci, M., Robb, M. A. and Tonachini, G., J. Am. Chem. Soc., 108, 1408 (1986).Google Scholar
6. Bernardi, F., Bottoni, A., Robb, M. A., Schlegel, H. B. and Tonachini, G., J. Am. Chem. Soc, 107, 2260 (1985).Google Scholar
7. Frisch, M. J., Head-Gordon, M., Trucks, G. W., Foresman, J. B., Schlegel, H. B., Raghavachari, K., Robb, M. A., Binkley, J. S., Gonzalez, C., Defrees, D. J., Fox, D. J., Whiteside, R. A., Seeger, R., Melius, C. F., Baker, J., Martin, R. L., Kahn, L. R., Stewart, J. J. P., Topiol, S., and Pople, J. A., Gaussian 90 (Gaussian, Inc., Pittsburgh PA, 1990).Google Scholar
8. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Jensen, J. H., Koseki, S., Gordon, M. S., Nguyen, K. A.,. Windus, T. L. and Elbert, S. T., QCPE Bulletin 10, 52 (1990).Google Scholar
9. Hurst, G. J. B., Dupuis, M. and Clementi, E., J.Chem. Phys., 89, 385 (1988).Google Scholar