Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T15:54:14.746Z Has data issue: false hasContentIssue false

Intermediate Phases in LixFePO4

Published online by Cambridge University Press:  26 February 2011

Atsuo Yamada
Affiliation:
[email protected], Tokyo Institute of Technology, Electronic Chemistry, G1-4 4259 Nagatsuta, Midori, Yokohama, 226-8502, Japan, +81-45-924-5403, +81-45-924-5403
Shinichi Nishimura
Affiliation:
[email protected], Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8502, Japan
Hiroshi Koizumi
Affiliation:
[email protected], Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8502, Japan
Ryoji Kanno
Affiliation:
[email protected], Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8502, Japan
Shiro Seki
Affiliation:
[email protected], Central Research Institute of Electric Power Industry, 2-11-1 Iwadokita, Komae,, Tokyo, 201-8511, Japan
Yo Kobayashi
Affiliation:
[email protected], Central Research Institute of Electric Power Industry, 2-11-1 Iwadokita, Komae,, Tokyo, 201-8511, Japan
Hajime Miyashiro
Affiliation:
[email protected], Central Research Institute of Electric Power Industry, 2-11-1 Iwadokita, Komae,, Tokyo, 201-8511, Japan
Joanna Dodd
Affiliation:
[email protected], California Institute of Technology, 138-78, Pasadena, CA, 91125, United States
Rachid Yazami
Affiliation:
[email protected], California Institute of Technology, 138-78, Pasadena, CA, 91125, United States
Brent Fultz
Affiliation:
[email protected], California Institute of Technology, 138-78, Pasadena, CA, 91125, United States
Get access

Abstract

Rietveld analysis for the time of flight powder neutron diffraction profile for LiFePO4 at room temperature was performed. Refined tensor elements of the unisotropic thermal factor under the elliptic approximation showed the principal axis of the lithium vibration is toward the face shared vacant tetrahedral space and is consistent with the theoretical prediction; lithium ions diffuse along curved one-dementional chain along b-axis. Impact of temperature on the phase diagram of LixFePO4 with > 200nm particle size was slight under the unmixing line around 200 C. While the reduction in particle size down to <100 nm seems to have significant effect to the room temperature miscibility gap. The thermodynamic concepts for the extended solution in smaller particles are discussed, followed by a demonstration of very high rate capability observed for the small spherical particles < 80 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. J. Electrochem. Soc., 144, 11881194 (1997)Google Scholar
2. Yamada, A., Chung, S.-C. & Hinokuma, K. J. Electrochem. Soc. 148, A224–A229 (2001)Google Scholar
3. Chung, S. Y., Bloking, J. T. & Chiang, Y. M. Nature Mater. 1, 123128 (2002)Google Scholar
4. Subramanya Herle, P., Ellis, B., Coombs, N. & Nazar, L. Nature Mater. 3, 147152 (2004)Google Scholar
5. Maxisch, T., Zhou, F., & Ceder, G. Phys Rev. B 73, 104301 (2006)Google Scholar
6. Ellis, B., Perry, L. K., Ryan, D. H., & Nazar, L. F., J. Am. Chem. Soc., 128, 1141611422 (2006)Google Scholar
7. Yamada, A.; Yonemura, M.; Takei, Y.; Sonoyama, N.; Kanno, R. Electrochem. Solid State Lett., 8, A55 (2005)Google Scholar
8. Morgan, D., Van der Ven, A. & Ceder, G., Electrochem. Solid State Lett. 7, A30–A32 (2004)Google Scholar
9. Islam, M. S., Driscoll, D. J., Fisher, C. A. J., & Slater, P. R. Chem. Mater., 17, 50855092 (2005)Google Scholar
10. Chen, G., Song, X., Richardson, T. J. Electrochem. Solid State Lett., 9, A296–A298 (2006)Google Scholar
11. Laffont, L., Delacourt, C., Gibot, P., Yue Wu, M., Kooyman, P., Masquelier, C., Tarascon, J. M., Chem. Mater. in press (2007)Google Scholar
12. Srinivasan, V. & Newman, J. J. Electrochem. Soc. 151, A1517–A1529 (2004)Google Scholar
13. Yamada, A., Koizumi, H., Sonoyama, N. & Kanno, R. Electrochem. Solid State Lett., 8, A409–A413 (2005)Google Scholar
14. Delacourt, C., Poizot, P., Tarascon, J. M. & Masquelier, C. Nature Mater. 4, 254260 (2005)Google Scholar
15. Dodd, J. L., Yazami, R. & Fultz, B. Electrochem.Solid State Lett. 9, A151–A155 (2006)Google Scholar
16. Yamada, A., Koizumi, H., Nishimura, S., Sonoyama, N., Kanno, R., Yonemura, M., Nakamura, T. & Kobayashi, Y., Nature Mater. 5, 357360 (2006)Google Scholar
17. Srinivasan, V. & Newman, J. Electrochem.Solid State Lett. 9, A110A114 (2006)Google Scholar
18. Zhou, F., Maxisch, & Ceder, G. Phys. Rev. Lett., 97, 155704 (2006)Google Scholar
19. Gabrisch, H., Wilcox, J., & Doeff, M., presented at the 210th Electrochem. Soc. Mtg, Abs. #177, Cancun, Mexico (2006)Google Scholar
20. Maxisch, T., Ceder, G., Phys. Rev. B, 73, 174112 (2006)Google Scholar
21. Chiang, Y. M., Meethong, N., Huang, H.-Y. S., Carter, W. C., presented at the 210th Electrochem. Soc. Mtg, Abs. #313, Cancun, Mexico (2006)Google Scholar
22. Dodd, J., Nishimura, S., Yazami, R., Yamada, A., Fultz, B., presented at the 210th Electrochem. Soc. Mtg, Abs. #179, Cancun, Mexico (2006)Google Scholar
23. Kim, D.-H., Kim, J., Electrochem.Solid State Lett. 9, A439–A442 (2006)Google Scholar
24. Wagemaker, M., Borghols, W. J. H, & Mulder, F. M., presented at IMLB 13, Abs. #237, Biarritz, France (2006)Google Scholar