Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:43:10.987Z Has data issue: false hasContentIssue false

Intermediate Annealing Behavior And Grain Growth Of Al-Cu-Fe Quasicrystalline Coatings

Published online by Cambridge University Press:  11 February 2011

M. J. Daniels
Affiliation:
Center for Nanomaterials Science, Department of Materials Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109–2136
D. King
Affiliation:
Technology Assessment and Transfer, Annapolis, MD, 21108
J. S. Zabinski
Affiliation:
Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433
J. C. Bilello
Affiliation:
Center for Nanomaterials Science, Department of Materials Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109–2136
Get access

Abstract

A powder composite AlCuFe target was used to produce 10 micron films of a quasicrystalline precursor phase by RF sputtering onto polycrystalline alumina substrates. X-ray studies have determined this precursor to be a nano-quasicrystalline phase, despite previous reports of an amorphous structure. Anneals for various times at temperatures between 450°C and 550°C showed the evolution and grain growth of the quasicrystalline approximant structure as a function of both variables. Synchrotron diffraction studies showed a bimodal grain size distribution of the quasicrystalline approximant structure for anneals at 450 °C for 1 hour, below a previously reported transition temperature of 475 °C. Composition analysis of annealed films by XPS depth profiling showed the surface composition to be nearly stoichiometric Al2O3 and extensive oxygen penetration to 160 nm. X-ray diffraction studies have been correlated with cross section microscopy to characterize the development of quasicrystalline films from their precursors. Anneals for longer times and at higher temperatures showed no evidence of a bimodal distribution or remaining nanoquasicrystalline phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsai, A.P., Inoue, A., Masumoto, T., J. Journal. Of Applied Physics, 26 (9) 1987, L1505 Google Scholar
2. Dubois, J. M., Kang, S. S., von Stebut, J., J. Mat. Sci. Letters 10 (1991) 537.Google Scholar
3. Dubois, J. M., Kang, S. S., Massiani, Y., J. Non-Cryst. Solids 153&154 (1993) 443.Google Scholar
4. Audier, M. and Guyot, P., Proceedings of the Third International Meeting on Quasicrystals, Vista Hermosa, Mexico (1989) 152.Google Scholar
5. Waseda, A., Araki, K., Kimura, K., Ino, H., J. Non-Cryst. Solids 153&154 (1993) 635.Google Scholar
6. Gayle, F. W., Shapiro, A. J., Biancaniello, F. S., Boettinger, W. J., Met. Trans. A, 23 (1992) 2409.Google Scholar
7. Faudot, F., Quivy, A., Calvayrac, Y., Gratias, D., Harmelin, M., Met. Sci. Eng. A, 133 (1991) 383.Google Scholar
8. Haugeneder, A., Eisenhammer, T., Mahr, A., Schneider, J., Wendel, M., Thin Solid Films, 307 (1997) 120.Google Scholar
9. Gil-Gavatz, M., Rouxel, D., Pigeat, P., Weber, B., Dubois, J.M., Mat. Res. Soc. Symp. Proc., Vol. 553, 1999, 75 Google Scholar
10. Kang, S. S., Dubois, J. M., J. Mater. Res. 10, 5 (1995) 1071.Google Scholar
11. Daniels, M. J., King, D., Zabinski, J. S., Rek, Z. U., Bilello, J. C., Mat. Res. Soc. Symp. Proc., Vol. 695, 2002, 471.Google Scholar