Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:36:32.691Z Has data issue: false hasContentIssue false

Intergrowth Structures in Synthetic Pyrochlores: Implications for Radiation Damage Effects and Waste Form Formulation

Published online by Cambridge University Press:  10 February 2011

E. C. Buck
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
D. B. Chamberlain
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
R. Gieré
Affiliation:
Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907-1397
Get access

Abstract

Titanate-based ceramic waste forms are currently under development for the immobilization of excess weapons plutonium. Both Hf and Gd are added to the ceramic formulation as neutron absorbers in order to satisfy a defense-in-depth concept for the waste form. The introduction of significant amounts of hafnium may be responsible for the presence of zirconolite-2M crystals in pyrochlore-based ceramics and the formation of zirconolite lamellae within pyrochlore. The zirconolite grows epitaxially on { 111 }planes of pyrochlore. Although the zirconolite lamellae within pyrochlore are non-cubic, any volume expansion due to radiation damage in the pyrochlore should still be isotropic; in addition, the presence of these intergrowths may allow some stress relief in the ceramic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vance, E. R., Ball, C. J., Day, R. A., Smith, K. L., Blackford, M. G., Begg, B., and Angel, P. J., J. Alloys Comp. 213/214 (1994) 406409.Google Scholar
2. Bakel, A. J., Mertz, C. J., Buck, E. C., Chamberlain, D. B., in Scientific Basis for Nuclear Waste Management XXII Conf., Boston, MA, Nov 30-Dec 4 (1998).Google Scholar
3. Sears, V. F., Neutron News 3 (1992) 2937 Google Scholar
4. Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, John Wiley & Sons, New York, 1980, 4th ed., pp. 824827.Google Scholar
5. Pouchou, J. L. and Pichoir, F., Rech. Aérosp 1984–3 (1984) 167192.Google Scholar
6. Lumpkin, G. R., Smith, K. L., and Gieré, R., Micron 28 (1997) 5768.Google Scholar
7. Gieré, R., Williams, C. T., and Lumpkin, G. R., Schweizerische Mineralogische und Petrographische Mitteilungen 78 (1998) 433459.Google Scholar
8. Smith, K. L. and Lumpkin, G. R., in Defects and Processes in the Solid State: Geoscience Applications, McLaren Volume, ed., Boland, J. N. and FitzGerald, J. D., Elsevier Science Publishers (1993).Google Scholar
9. Gatehouse, B. M., Grey, I. E., Hill, R. J., Rossell H, H. J., Acta Cryst B37 (1981) 306312.Google Scholar
10. Fortner, J. A. and Buck, E. C., Appl. Phys. Lett. 68 (1996) 38193821.Google Scholar
11. Putnam, R. L., Navrotsky, A., Boerio-Goates, J., and Woodfield, B. F., in Scientific Basis for Nuclear Waste Management XXII Conf., Boston, MA, Nov 30-Dec 4 (1998).Google Scholar
12. Ewing, R. C., Weber, W. J., Prog. Nucl. Energy 29 (1995) 63127.Google Scholar
13. Lumpkin, G. R., Hart, K. P., McGlinn, P. J., Payne, T. E., Gieré, R., and Williams, C. T., Radiochim. Acta 66/67 (1994) 469474.Google Scholar