Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T16:12:40.105Z Has data issue: false hasContentIssue false

Interfacial Structure of Lattice Mismatched bcc(110)/bcc(110) Transition Metal Superlattices

Published online by Cambridge University Press:  15 February 2011

Eric E. Fullerton
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne IL 60439
S. M. Mini
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439
A. S. Bommannavar
Affiliation:
Brooklyn College of CUNY, Brooklyn, NY 11210
C. H. Sowers
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne IL 60439
S. N. Ehrlich
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, IN 47907
S. D. Bader
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne IL 60439
Get access

Abstract

We present structural characterizations of a series of sputtered Fe/Nb and V/Nb superlattices by high-angle x-ray diffraction. Diffraction scans were performed with the scattering vector at various angles (χ) with respect to the layers. χ=0° diffraction spectra (normal to the layers) were fitted to a general structural model to determine the (110) lattice strains, interfacial disorder and interdiffusion. χ>0° spectra probe the lattice strain of the individual layers and the in-plane interfacial coherence. Both systems form incoherent interfaces above a critical modulation wavelength (ΛC). At ΛC, the Fe/Nb system undergoes a crystalline-to-amorphous transition while the V/Nb forms in-plane coherent interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for instance Physics, Fabrication, and Applications of Multilayered Structures, edited by Dhez, P. and Weisbuch, C. (Plenum, New York, 1988).Google Scholar
2. Mattson, J. E., Sowers, C.H., Berger, A. and Bader, S.D., Phys. Rev. Lett. 68, 3252 (1992).Google Scholar
3. Mattson, J. E., Fullerton, E. E., Sowers, C.H., Huang, Y.Y., Felcher, G.P., and Bader, S.D.,. J. Appl. Phys. (in press).Google Scholar
4. Fullerton, E. E., Schuller, I. K., Vanderstraeten, H., and Bruynseraede, Y., Phys. Rev. B 45, 9292 (1992).Google Scholar
5. Fullerton, E. E., Schuller, I. K., and Bruynseraede, Y., MRS Bulletin XVII(12), 33 (1992).CrossRefGoogle Scholar
6. Schuller, I. K., Phys. Rev. Lett. 44, 1597 (1980).Google Scholar
7. Khan, M.R., Chun, C.S.L., Felcher, G.P., Grimsditch, M., Kueny, A., Falco, C. M., and Schuller, I.K., Phys. Rev. B 27, 7186 (1983).CrossRefGoogle Scholar
8. Fullerton, E.E., Kumar, S., Grimsditch, M., Kelly, D.M., and Schuller, I.K., Phys. Rev. B (submitted).Google Scholar
9. Waseda, Y. and Masumoto, T., Z. Physik B 22, 121 (1975).Google Scholar
10. Ariosa, D., Fischer, Ø., Karkut, M.G., and Triscone, J.-M., Phys. Rev. B 37, 2421 (1988).Google Scholar
11. Fecht, H.J., Nature 356, 133 (1992).CrossRefGoogle Scholar
12. Rehn, L.E., Okamoto, P.R., Pearson, J., Bhadra, R., and Grimsditch, M., Phys. Rev. Lett. 59, 2987 (1987).Google Scholar