Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T04:25:54.793Z Has data issue: false hasContentIssue false

Interfacial Stability and Surface Morphology in Layer-By-Layer Semiconductor Heteroepitaxy Luis

Published online by Cambridge University Press:  10 February 2011

A. Zepeda-Ruiz
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
Dimitrios Maroudas*
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
W. Henry Weinberg
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
*
a)To whom correspondence should be addressed; E-mail: [email protected]
Get access

Abstract

A theoretical analysis based on continuum elasticity theory and atomistic simulations is presented of the interfacial stability with respect to misfit dislocation formation and of the film surface morphology during layer-by-layer growth semiconductor heteroepitaxy. The strain in the coherently strained films, the energetics of a transition from a coherent to a semicoherent interface consisting of misfit dislocation arrays or networks, and the morphological details of the film surface profile are calculated for InAs/GaAs(110) and InAs/GaAs(111)A. The analysis is presented for the general case of heteroepitaxy on a finite-thickness compliant substrate. The results are discussed in the context of recent experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. see, e.g. articles in MRS Bulletin 21, No. 4 (1996) and references therein.Google Scholar
2. Bressler-Hill, V., Lorke, A., Varma, S., Petroff, P. M., Pond, K., and Weinberg, W. H., Phys. Rev. B. 50, 8479 (1994); V. Bressler-Hill, S. Varma, A. Lorke, B. Z. Nosho, and W. H. Weinberg, Phys. Rev. Lett., 74, 3209 (1995).Google Scholar
3. Zhang, X., Pashley, D. W., Hart, L., Neave, J. H., Fawcett, P. N., and Joyce, B. A., J. Crystal Growth 131, 300 (1993).Google Scholar
4. Belk, J. G., Sudijono, J. L., Zhang, X. M., Neave, J. H., Jones, T. S., and Joyce, B. A., Phys. Rev. Lett. 78, 475 (1997).Google Scholar
5. Yamaguchi, H., Belk, J. G., Zhang, X. M., Sudijono, J. L., Fahy, M. R., Jones, T. S., Pashley, D. W., and Joyce, B. A., Phys. Rev. B 55, 1337 (1997).Google Scholar
6. Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth 27, 118 (1974).Google Scholar
7. Freund, L. B. and Nix, W. D., Appl. Phys. Lett. 69, 173 (1996).Google Scholar
8. Priester, C. and Lannoo, M., Phys. Rev. Lett. 75, 93 (1995).Google Scholar
9. Ichimura, M., Phys. Stat. Sol. A 153, 431 (1996).Google Scholar
10. Hirth, J. P. and Lothe, J., Theory of Dislocations, Wiley, New York, NY, 1982; F. R. N. Nabarro, Theory of Crystal Dislocations, Dover, New York, NY, 1987.Google Scholar
11. Keating, P. N., Phys. Rev. 145, 637 (1966); R. M. Martin, Phys. Rev. B 1, 4005 (1970); J. L. Martins and A. Zunger, Phys. Rev. B 30, 6217 (1984).Google Scholar
12. Maroudas, D., Zepeda-Ruiz, L. A., and Weinberg, W. H., submitted for publication (1998).Google Scholar