Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:47:22.393Z Has data issue: false hasContentIssue false

Interfacial Reactions in the Al/Si3N4/Si and Au/Si3N4/Si Systems

Published online by Cambridge University Press:  22 February 2011

F. Edelman
Affiliation:
Technion-Israel Institute of Technology, Department of Materials Engineering, Haifa 32000, Israel
E. Gutmanas
Affiliation:
Technion-Israel Institute of Technology, Department of Materials Engineering, Haifa 32000, Israel
R. Brener
Affiliation:
Solid State Institute, Haifa 32000, Israel
Get access

Abstract

The interface chemistry and structure of thin Al and Au films deposited on Si3N4 have been studied. In the case of Al/Si3N4 system, an interfacial AIN like layer was observed in the as-deposited state. The thickness of this layer was found to increase with increasing the temperature up to 600°C. This thin AlN layer acts as a diffusion barrier which prevents Al to diffuse into Si3N4 Furthermore, Si released in the reaction between Al and Si3N4 appears to crystallize into small islands dispersed in the interfacial region. In contrast to Al, no reaction between Au and Si3N4 was observed in the as-deposited state. However, after heat treatment at temperatures higher than 400°C gold silicides (Au5Si2,Au2Si,Au3Si) with a very thin Si layer accumulated on the Au surface were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Edelman, F., Gutmanas, E., Katz, A. and Brener, R., Appl. Phys. Lett. 53 1186 (1988).Google Scholar
2. Edelman, F., Gutmanas, E. and Brener, R. in Proceedings of the 4th Israel Materials Engineering Conference, Beer-Sheva, Israel, 7-8 Dec. 1988 (in press).Google Scholar
3. Barbour, J. C., Kuiper, A. E. T., M. Willemsen, F.C. and Reader, A. H., Appl. Phys. Lett. 50, 953 (1987).Google Scholar
4. Ning, X. S., Suganuma, K., Morita, M. and Okamoto, T., Philos. Mag. Lett. 55, 93 (1987).Google Scholar
5. Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry (Pergamon, Oxford, 1979).Google Scholar
6. Edelman, F. in Silicon Nitride in Electronics (Elsevier, 1988).Google Scholar
7. Brener, R., Edelman, F. and Gutmanas, E., Appl. Phys. Lett. 54, 901 (1989).Google Scholar
8. Lieske, N. and Hezel, R., J. Appl. Phys. 52, 5806 (1981); J. A. Kovacich, J. Kasperkiewicz, D. Lichtman and C.R. Aita, J. Appl. Phys. 55, 2935 (1984).Google Scholar
9. Weiss, J., Gauckler, L. J., Lukas, H.L., Petzow, G. and Tien, T. Y., J. Mater. Res. 16, 2907 (1981).Google Scholar
10. Edelman, F., Gutmanas, E. Y. and Brener, R. in Proceedings of the 175th Electrochemical Society Meeting, Los Angeles, California, May 7-12, 1989 (in press).Google Scholar
11. Harris, J. M., Blattner, E. J., Ward, I.D., Evans, C.A. Jr., Fraser, H. L., Nicolet, M. A. and Ramiller, C. L., J. Appl. Phys. 48, 2897 (1977).Google Scholar
12. Duan, J. Z., Li, Y. and Wu, Z. O., Solid State Commiun. 65, 7 (1988).Google Scholar
13. Tsaur, B. Y. and Mayer, J. W., Philos. Mag. A43, 345 (1981).Google Scholar
14. Edelman, F., Gutmanas, E. and Brener, R. (to be published).Google Scholar
15. McCaldin, J. O. and Sankur, H., Appl. Phys. Lett. 19, 524 (1971).Google Scholar
16. Parrill, T. M. and Chung, Y. W., J. Vac. Sci. Technol. A6, 1589 (1988).Google Scholar
17. Hiraki, A., Surf. Sci. Repts. 3, 357 (1984).Google Scholar