Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T18:36:37.227Z Has data issue: false hasContentIssue false

Interfacial Properties and Mechanical Behavior of Titanium Aluminides

Published online by Cambridge University Press:  10 February 2011

M. H. Yoo
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6115, [email protected]
C. L. Fu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6115, [email protected]
Get access

Abstract

The role of various interfaces in deformation and fracture behavior of two-phase TiAl-Ti3Al alloys is analyzed on the basis of the specific interfacial and surface energies determined from ab initio calculations. The propensity of twinning observed in these alloys is consistent with the low true-twin boundary energy. The strong plastic anisotropy reported in TiAl polysynthetically twinned (PST) crystals is attributed partly to the localized slip along lamellar interfaces, thus lowering the yield stress for soft orientations. Interfacial fracture energies are estimated to be the highest for the α2/γ lamellar boundary and the lowest for the 120° rotational γ/γ boundary. The fracture mode mixity plays an important role in the crack-tip plasticity by ordinary slip and true-twinning, leading to translamellar and interfacial fracture.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gamma Titanium Aluminides. eds. Kim, Y.-W., Wagner, R., and Yamaguchi, M. (TMS Symp. Proc, Warrendale, PA, 1995).Google Scholar
2. Fundamental Aspects of Gamma Titanium Aluminides. Symposium at TMS Annual Meeting, Feb. 10–12, 1997, Orlando (Papers to be published in Metall. Trans. A).Google Scholar
3. Fujiwara, T., Nakamura, A., Hosomi, M., Nishitani, S. R., Shirai, Y., and Yamaguchi, M., Phil. Mag. A 61, 591 (1990).Google Scholar
4. Nakano, T., Kawanaka, T., Yasuda, H. Y., and Umakoshi, Y., Mater. Sci. Eng. A 194, 43 (1995).Google Scholar
5. Fu, C. L. and Yoo, M. H., Phil. Mag. Lett. 62, 159 (1990).Google Scholar
6. Yoo, M. H. and Fu, C. L., Metall. Mater. Trans. A (in press).Google Scholar
7. McCullough, C., Valencia, J. J., Levi, C. G., and Mehrabian, R., Acta Met. 37, 1321 (1989).Google Scholar
8. Wang, P. and Vasudevan, V. K., High-Temperature Ordered Intermetallic Alloys IV. eds. Baker, I., Darolia, R., Whittenberger, J. D., and Yoo, M. H. (MRS Symp. Proc. Vol. 288, Pittsburgh, PA, 1993), p. 229.Google Scholar
9. Blackburn, M. J., The Science and Technology and Applications of Titanium. Pergamon, Oxford, 1970, p. 633.Google Scholar
10. Kim, Y.-W., Microstructure-Property Relationships in Titanium Aluminides and Alloys, eds. Kim, Y.-W. and Boyer, R. R. (TMS Symp. Proc, Warrendale, PA, 1991), p. 91.Google Scholar
11. Jones, S.A. and Kaufman, M. F., Acta Metall. Mater. 41 (1993) 387.Google Scholar
12. Rao, S., Woodward, C., and Hazzledine, P. M., Defect-Interface Interactions, eds. Kvam, E. P., King, A. H., Mills, M. J., Sands, T. D., and Vitek, V. (MRS Symp. Proc. Vol. 319, Pittsburgh, PA, 1994), p. 285.Google Scholar
13. Wimmer, W., Krakauer, H., Weinert, M., and Freeman, A. J., Phys. Rev. B24, 864 (1981)Google Scholar
14. Fu, C. L. and Yoo, M. H., Ser. Mater. 37, 1453 (1997).Google Scholar
15. Woodward, C. and MacLaren, J. M., J. Mater. Res., 7 (1992) 1735.Google Scholar
16. Yoo, M. H., Fu, C. L., and Lee, J. K., Twinning in Advanced Materials, eds. Yoo, M. H. and Wuttig, M. (TMS Symp. Proc, Warrendale, PA, 1994), p. 97.Google Scholar
17. Simmons, J. P., Rao, S. I., and Dimiduk, D. M., Phil. Mag. A 75, 1299 (1997).Google Scholar
18. Fu, C. L., Zou, J., and Yoo, M. H., Ser. Metall. Mater. 33, 885 (1995).Google Scholar
19. Umakoshi, Y. and Yamaguchi, M., Phys. Stat. Sol. (a) 68, 457 (1981).Google Scholar
20. Yoo, M. H., Zou, J., and Fu, C. L., Mater. Sci. Eng. A 192/193, 14 (1995).Google Scholar
21. Hazzledine, P. M., Kad, B. K., Fraser, H. L., and Dimiduk, D. M., Intermetallie Matrix Composites II. eds. Miracle, D. B., Anton, D. L., and Graves, J. A. (MRS Symp. Proc. Vol. 273, MRS, Pittsburg, PA, 1992), p. 81.Google Scholar
22. Appel, F. and Wagner, R., Gamma Titanium Aluminides. eds. Kim, Y.-W., Lgner, R. W., and Yamaguchi, M. (TMS Symp. Proc, Warrendale, PA, 1995), p. 231.Google Scholar
23. Kad, B. K., Hazzledine, P. M., and Fraser, H. L., High-Temperature Ordered Intermetallic Allovs IV. eds. Baker, I., Darolia, R., Whittenberger, J. D., and Yoo, M. H. (MRS Symp. Proc Vol. 288, Pittsburgh, PA, 1993), p. 495.Google Scholar
24. Kad, B. K. and Asaro, R., unpublished result, Univ. of California, San Diego, 1996.Google Scholar
25. Hsiung, L. M., Schwartz, A. J., and Nieh, T. G., Scr. Mater. 36, 1017 (1997).Google Scholar
26. Hazzledine, P. M. and Kad, B. K., Mater. Sci. Eng. A 192/193, 340 (1995).Google Scholar
27. Liu, C.T., Maziasz, P. J., Clemens, D. R., Schneibel, J. H., Sikka, V. K., Nieh, T. G., Wright, J. L., and Walker, L. R., Gamma Titanium Aluminides. eds. Kim, Y.-W., Wagner, R., and Yamaguchi, M. (TMS Symp. Proc, Warrendale, PA, 1995), p. 679.Google Scholar
28. Sun, Y. Q., High-Temperature Ordered Intermetallic Allovs-VII. eds. Koch, C. C., Liu, C. T., Stoloff, N. S., and Wanner, A. (MRS Symp. Proc Vol. 460, Pittsburgh, PA, 1997), p. 109.Google Scholar
29. Yoo, M. H. and Fu, C. L., Mater. Sci. Eng. A 153, 470 (1992).Google Scholar
30. Appel, F., Christoph, U., and Wagner, R., Phil. Mag. A 72, 341 (1995).Google Scholar
31. Mathews, J. W., Phil. Mag. 29, 797 (1974).Google Scholar
32. Chan, K. and Kim, Y.-W., Acta Metall. Mater. 43, 439 (1995).Google Scholar
33. Mitao, S., Tsuyama, S., and Minakawa, K., Mater. Sci. Eng. A 143, 51 (1991).Google Scholar
34. Liu, C. T., Schneibel, J. H., Maziasz, P. J., Wright, J. L., and Easton, D. S., Intermetallics 4, 429 (1996).Google Scholar
35. Booth, A. S. and Roberts, S. G., Acta Mater. 45, 1045 (1997).Google Scholar
36. Phan-Courson, I., Doctoral Thesis, University of Paris VI, 1993.Google Scholar
37. Yokoshima, S. and Yamaguchi, M., Acta Mater. 44, 873 (1996).Google Scholar
38. Hazzledine, P. M., Shoykhet, B., and Grinfeld, M. A., Proc. David A. Smith Symposium on Boundaries and Interfaces in Materials, TMS Fall Meeting Sept. 14–18, 1997 (in press).Google Scholar