Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:52:58.872Z Has data issue: false hasContentIssue false

Interface-dependence of Nucleation and Self-Assembly of Ultrathin Iron Oxide Films

Published online by Cambridge University Press:  10 February 2011

Guido Ketteler
Affiliation:
Department of Inorganic Chemistry, Fritz-Haber-Institute of theMPG, Faradayweg 4-6, 14195 Berlin, Germany.
Wolfgang Ranke
Affiliation:
Department of Inorganic Chemistry, Fritz-Haber-Institute of theMPG, Faradayweg 4-6, 14195 Berlin, Germany.
Get access

Abstract

The interface-dependence of heteroepitaxial growth of iron oxide films is investigated by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). We show that the different chemical affinity to the metal substrate (Ru vs. Pt) and the step density (basal vs. vicinal Pt) significantly influence nucleation, heteroepitaxial crystal growth, and adhesion. Repeated Fe deposition-oxidation cycles lead to a Stranski-Krastanov growth mode on all substrates. On Ru(0001), metastable FeO(111) layers with strongly expanded lattice constants with a thickness up to 4 monolayers (ML) can be obtained by one-minute oxidation of the corresponding amount of Fe. Homogeneous nucleation of self-assembled, periodic Fe304(111) nanodomains embedded in an ultrathin FeO(111) film occurs on Ru(0001) in ∼4 ML thick FeO(111) films. Nucleation of Fe304(111) islands below 4 ML on Ru(0001) occurs preferentially at substrate step edges while on Pt(111), no influence of surface defects was observed. On a vicinal Pt substrate, the terrace width and step height triplicates under influence of the wetting FeO(111) film. Differences in the growth behavior are discussed in terms of the involved surface and interface free energies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Geus, J. W., Appl. Catal. 25 (1986), 313.Google Scholar
[2] Weiss, W., Schlögl, R., Top. Catal. 13 (2000), 75.Google Scholar
[3] Shen, J. Kirschner, J., Surf. Sci. 500 (2002), 300.Google Scholar
[4] Surnev, S., Kresse, G., Ramsey, M. G., Netzer, F. P., Phys. Rev. Lett. 87 (2001), 086102.Google Scholar
[5] Netzer, F. P., Surf. Rev. Lett. 9 (2002), 1553.Google Scholar
[6] Ketteler, G., Weiss, W., Ranke, W., Schlögl, R., Phys. Chem. Chem. Phys. 3 (2001), 1114.Google Scholar
[7] Bauer, E., Z. Kristallogr. 110 (1958), 372; 395.Google Scholar
[8] Heemeier, M., Stempel, S., Shaikhutdinov, S. K., Libuda, J., Bäumer, M., Oldman, R. J., Jackson, S. D., Freund, H.J., Surf. Sci. 523 (2003), 103.Google Scholar
[9] Diebold, U., Surf. Sci. Rep. 48 (2003), 53.Google Scholar
[10] Chambers, S. A., Droubay, T., Jennison, D. R., Mattson, T. R., Science 297 (2002), 827.Google Scholar
[11] Schmidt, Th., Bauer, E., Phys. Rev. B62 (2000), 15815.Google Scholar
[12] Ketteler, G., Ranke, W., Schlögl, R., Adv. Mater., submitted 24.02.03.Google Scholar
[13] Markov, I., Mat. Chem. Phys. 49 (1997), 93.Google Scholar
[14] Tersoff, J., Phys. Rev. Lett. 74 (1995), 434.Google Scholar
[15] Weiss, W., Ritter, M., Phys. Rev. B59 (1999), 5201.Google Scholar
[16] Ketteler, G., Ranke, W., J. Phys. Chem. B (2003), in press.Google Scholar
[17] Weiss, W., Ritter, M., Zscherpel, D., Swoboda, M., Schlögl, R., J. Vac. Sci. & Technol. A16 (1998), 21.Google Scholar
[18] Ketteler, G., Ranke, W., Phys. Rev. B66 (2002), 033405.Google Scholar
[19] Ranke, W., Ritter, M., Weiss, W., Phys. Rev. B60 (1999), 1527.Google Scholar
[20] SShaikhutdinov, h. K., Ritter, M., Weiss, W., Phys. Rev. B62 (2000), 7535.Google Scholar
[21] Kim, Y. J., Westphal, C., Ynznza, R. X., Wang, Z., Galloway, H. C., Salmeron, M., Van Hove, M. A., Fadley, C. S., Surf. Sci. 416 (1998), 68.Google Scholar
[22] Tasker, P. W., J. Phys. C: Solid State Phys. 12 (1979), 4977.Google Scholar
[23] Noguera, C., J. Phys.: Cond. Matter 12 (2000), R367.Google Scholar
[24] Larsen, J. H., Chorkendorff, I., Surf. Sci. Rep. 35 (1999), 165.Google Scholar
[25] Tasker, P. W., Duffy, D. M., Surf. Sci. 137 (1984), 91.Google Scholar
[26] Heffelfinger, J. R., Carter, C. B., Surf. Sci. 389 (1997), 188.Google Scholar
[27] Blakely, D. W., Somorjai, G. A., Surf. Sci. 65 (1977), 419.Google Scholar
[28] Hahn, E., Schief, H., Marsico, V., Fricke, A., Kern, K., Phys. Rev. Lett. 72 (1994), 3378.Google Scholar
[29] Kim, S. S., Baik, S., Kim, H. W., Kim, C. Y., Surf. Sci. Lett. 294 (1993), L935.Google Scholar
[30] Kurnosikov, O., Van, L. Pham, Cousty, J., Surf. Int. Anal. 29 (2000), 608.Google Scholar