Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-15T00:44:48.710Z Has data issue: false hasContentIssue false

Interface Versus Diffusion Controlled Growth in Nanocrystallization Kinetic Studies

Published online by Cambridge University Press:  21 February 2011

N. Clavaguera
Affiliation:
Grup de Fisica de l'Estat Solid, Dept. E.C.M., Universitat de Barcelona, Diagonal 647, 08028–Barcelona, Spain
M.T. Clavaguera-mora
Affiliation:
Grup de Fisica de Materials, Dept. de Fisica, Universitat Autònoma de Barcelona, 08193–Bellaterra, Spain
Get access

Abstract

Nanocrystallization by heat treatment of initially amorphous alloys occurs for high nucleation frequency I and low crystal growth rate u values. Calorimetrie data extracted, for instance, from differential scanning calorimetry are normally presented by the dependence of the crystallized fraction x, on: i) x=x(T,t) when obtained under isothermal annealing at temperature T as a function of time t; ii) x=x(τ,β) when obtained under continuous heating at a scan rate β as a function of temperature. Theoretical analysis of the crystallization kinetics is presented which accounts for nuclei either pre-quenched or created by homogeneous nucleation whose initial steps of growth are controlled by the interface formation between the nanocrystals and the matrix and subsequent growth is limited by diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Johnson, W.A. and Mehl, K.F.. Trans. Am. Inst. Min. Metall. Eng. 135, 416 (1939).Google Scholar
2 Avrami, M., J. Chem. Phys. 7(1939) 103; 8 (1940)212; 9, 177(1941).Google Scholar
3 Kolmogorov, A.N., Izv. âkad. Nauk, Ser. Mater. 3, 355 (1937).Google Scholar
4 Yerofeev, B.V. and Mitzkevitch, N.I., Reactivity of Solids, (Elsevier, Amsterdam 1961), p. 273.Google Scholar
5 Uhlmann, D.R., Non-Cryst, J.. Solids 7, 337 (1972).Google Scholar
6 Clavaguera, N., Non-Cryst, J.. Solids 162, 40 (1993).Google Scholar
7 Clavaguera, N., Clavaguera-Mora, M.T., Mater. Sci. & Eng. A179/A180, 288 (1994).Google Scholar
8 Onorato, P.I.K., Uhlmann, D.R. and Hopper, R.W., J. Non-Cryst. Solids 41, 189 (1980).Google Scholar
9 Turnbull, D., Contemp. Phys. 10, 473 (1969).Google Scholar
10 Pradell, T., Clavaguera, N., Zhu, J. and Clavaguera-Mora, M. T., J. Phys.: Conden. Matter. 7, 4129 (1995).Google Scholar
11 Clavaguera, N., Clavaguera-Mora, M.T. and Fontana, M., (send to J. Mater. Res).Google Scholar
12 Clavaguera, N., Diego, J.A., Intermetallics, 1 187 (1993).Google Scholar
13 Diego, J.A., Clavaguera-Mora, M.T., Clavaguera, N., Mater. Sci. & Eng. A179/A180, 526 (1994).Google Scholar