Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T19:21:24.442Z Has data issue: false hasContentIssue false

Interface Stability During Rapid Directional Solidification

Published online by Cambridge University Press:  26 February 2011

David E. Hoglund
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Michael J. Aziz
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Get access

Abstract

At the solidification velocities observed during pulsed laser annealing, the planar interface between solid and liquid is stabilized by capillarity and nonequilibrium effects such as solute trapping. We used Rutherford backscattering and electron microscopy to determine the nonequilibrium partition coefficient and critical concentration for breakdown of the planar interface as a function of interface velocity for Sn-implanted silicon. This allows us to test the applicability of the Mullins- Sekerka stability theory to interfaces not in local equilibrium and to test the Coriell-Sekerka and other theories for oscillatory instabilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tiller, W.A., Jackson, K.A., Rutter, J.W., and Chalmers, B., Acta Metall. 1, 428 (1953).Google Scholar
2. Mullins, W.W. and Sekerka, R.F., J. Appl. Phys. 35, 444 (1964).Google Scholar
3. Baker, J.C. and Cahn, J.W., Acta Metall. 17, 575 (1969).Google Scholar
4. Narayan, J., J. Appl. Phys. 52, 1289 (1981).Google Scholar
5. Cullis, A.G., Hurle, D.T.J., Webber, H.C., Chew, N.G., Poate, J.M., Baeri, P., and Foti, G., Appl. Phys. Lett. 32, 642 (1981).Google Scholar
6. Campisano, S.U. and Poate, J.M., Appl. Phys. Lett. 47, 485 (1985).Google Scholar
7. Galvin, G.J., Mayer, J.W., and Peercy, P.S., Appl. Phys. Lett. 46, 644 (1985).Google Scholar
8. Thompson, M.O., Bucksbaum, P.H., and Bokor, J., Mater. Res. Soc. Symp. Proc. 35, 181 (1985).Google Scholar
9. Larson, B.C., Tischler, J.Z., and Mills, D.M., J. Mater. Res. 1, 144 (1986).Google Scholar
10. Aziz, M.J., Tsao, J.Y.. Thompson, M.O., Peercy, P.S., and White, C.W., Phys. Rev. Lett. 56, 2489 (1986).Google Scholar
11. Aziz, M.J. and White, C.W., Phys. Rev. Lett. 57, 2675 (1986).CrossRefGoogle Scholar
12. Goldman, L.M. and Aziz, M.J., J. Mater. Res. 2, 524 (1987).Google Scholar
13. Aziz, M.J. and Kaplan, T., Acta Metall. 36, 2335 (1988).CrossRefGoogle Scholar
14. Boettinger, W.J. and Coriell, S.R., in Science and Technology of the Undercooled Melt: Rapid Solidification Materials and Technologies, edited by Sahm, P.R., Jones, H., and Adams, C.M. (Nijhoff Publishers, Dordrecht, the Netherlands, 1986), p. 81.Google Scholar
15. Hoglund, D.E., Aziz, M.J., Stiffler, S.R., Thompson, M.O., Tsao, J.Y. and Peercy, P.S., J. Crystal Growth, in press (1990).Google Scholar
16. Aziz, M.J., White, C.W., Narayan, J., and Stritzker, B., in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Nguyen, V.T. and Cullis, A.G. (Editions de Physique, Paris, 1985), p.231.Google Scholar
17. White, C.W., Appleton, B.R., Stritzker, B., Zehner, D.M., and Wilson, S.R., Mater. Res. Soc. Symp. Proc. 1, 59 (1981).Google Scholar
18. Cahn, J.W., Coriell, S.R., and Boettinger, J.W., in Laser and Electron Beam Processing of Materials, edited by White, C.W. and Peercy, P.S. (Academic Press, New York, 1980), p. 89.Google Scholar
19. Evans, P.V., Devaud, G., Kelly, T.F., and Kim, Y.-W., Acta Metall. 38,719 (1990).Google Scholar
20. Thurmond, C.D. and Kowalchik, M., Bell System Technical Journal 39, 169 (1960).Google Scholar
21. Coriell, S.R. and Sekerka, R.F., J. Crystal Growth 1, 499 (1983).Google Scholar
22. Merchant, G.J. and Davis, S.H., Acta Metall. 38, 2683 (1990).Google Scholar
23. Coriell, S.R. (private communication).Google Scholar
24. Merchant, G.J. and Davis, S.H. (private communication).Google Scholar