Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T00:11:54.475Z Has data issue: false hasContentIssue false

Interface quality of atomic layer deposited La-doped ZrO2 films on Ge-passivated In0.15Ga0.85As substrates

Published online by Cambridge University Press:  31 January 2011

Alessandro Molle
Affiliation:
[email protected], CNR-INFM, Laboratorio Nazionale MDM, Agrate Brianza, Italy
Guy Brammertz
Affiliation:
[email protected], IMEC, Leuven, Belgium
Luca Lamagna
Affiliation:
[email protected], CNR-INFM, Laboratorio Nazionale MDM, Agrate Brianza, Italy
Sabina Spiga
Affiliation:
[email protected], CNR-INFM, Laboratorio Nazionale MDM, Agrate Brianza, Italy
Marc Meuris
Affiliation:
[email protected], IMEC, Leuven, Belgium
Marco Fanciulli
Affiliation:
[email protected], CNR-INFM, Laboratorio Nazionale MDM, Agrate Brianza, Italy
Get access

Abstract

La-doped ZrO2 thin films were grown by O3-based atomic layer deposition on III-V (GaAs, In0.15Ga0.85As) substrates. The direct oxide deposition and the insertion of a Ge passivation layer in between the oxide and the substrate are compared in terms of the resulting density of interface traps. An improved electrical quality of the Ge-passivated interfaces concerning the energy region close to the conduction band edge in the semiconductor band-gap is demonstrated through conductance maps at various temperatures and it is attributed to Ga-related interfacial defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Takagi, S., Irisawa, T., Tezuka, T., Numata, T., Nakaharai, S., Hirashita, N., Moriyama, Y., Usuda, K., Toyoda, E., Dissanayake, S., Sugiyama, N., IEEE Trans. Electr. Dev. 55, 21 (2008).10.1109/TED.2007.911034Google Scholar
2 Spicer, W. E., Liliental-Weber, Z., Weber, E., Newman, N., Kendelewicz, T., Cao, R., McCants, C., Mahowald, P., Miyano, K., and Lindau, I., J. Vac. Sci. Technol. B6, 1245 (1988).10.1116/1.584244Google Scholar
3 Hale, M. J., Yi, S. I., Sexton, J. Z., Kummel, A. C., Passlack, M., J. Chem. Phys. 119, 6719 (2003).10.1063/1.1601596Google Scholar
4 Robertson, J., Appl. Phys. Lett. 94, 152104 (2009)10.1063/1.3120554Google Scholar
5 Scarrozza, M., Pourtois, G., Houssa, M., Caymax, M., Stesmans, A., Meuris, M., Heyns, M.M., Microelectr. Engineer. 86, 1747 (2009).10.1016/j.mee.2009.03.110Google Scholar
6 Ye, P. D., J. Vac. Sci. Technol. A 26, 697 (2008).10.1116/1.2905246Google Scholar
7 Lin, H. C., Brammertz, G., Martens, K., Valicourt, G. de, Negre, L., Wang, W.-E, Tsai, W., Meuris, M., and Heyns, M., Appl. Phys. Lett. 94, 153508 (2009)10.1063/1.3113523Google Scholar
8 Xuan, Y. and Ye, P.D., IEEE Trans. Electron Devices 54, 1811 (2007).10.1109/TED.2007.900678Google Scholar
9 Kobayashi, M., Chen, P. T., Sun, Y., Goel, N., Majhi, P., Garner, M., Tsai, W., Pianetta, P., and Nishi, Y., Appl. Phys. Lett. 93, 182103 (2008).10.1063/1.3020298Google Scholar
10 Shiu, K. H., Chiang, T. H., Chang, P., Tung, L. T., Hong, M., Kwo, J., and Tsai, W., Appl. Phys. Lett. 92, 172904 (2008).10.1063/1.2918835Google Scholar
11 Marchiori, C., Webb, D.J., Rossel, C., Richter, M., Sousa, M., Gerl, C., Germann, R., Andersson, C., and Fompeyrine, J., J. Appl. Phys. 106, 114112 (2009).10.1063/1.3260251Google Scholar
12 Molle, A., Brammertz, G., Lamagna, L., Fanciulli, M., Meuris, M., and Spiga, S., Appl. Phys. Lett. 95, 023507 (2009).10.1063/1.3182734Google Scholar
13 Lamagna, L., Wiemer, C., Baldovino, S., Molle, A., Perego, M., SchammChardon, S., Coulon, P. E., and Fanciulli, M., Appl. Phys. Lett. 95, 122902 (2009).10.1063/1.3227669Google Scholar
14 Kuzum, D., Krishnamohan, T., Pethe, A. J., Okyay, A. K., Oshima, Y., Sun, Y., McVittie, J. P., Pianetta, P. A., McIntyre, P. C., and Saraswat, K. C., IEEE Elecron Device Lett. 29, (4) 328 (2008).10.1109/LED.2008.918272Google Scholar
15 Spiga, S., Wiemer, C., Tallarida, G., Scarel, G., Ferrari, S., Seguini, G., and Fanciulli, M., Appl. Phys. Lett. 87, 112904 (2005).10.1063/1.2042631Google Scholar
16 Fischer, D. and Kersch, A., Appl. Phys. Lett. 92, 012908 (2008).10.1063/1.2828696Google Scholar
17 Brammertz, G., Lin, H. C., Martens, K., Mercier, D., Merckling, C., Penaud, J., Adelmann, C., Sioncke, S., Wang, W. E., Caymax, M., Meuris, M., J. Electrochem. Soc. 155, H945 (2008).10.1149/1.2988045Google Scholar
18 Schockley, W. and Read, W. T., Phys. Rev. 87, 835 (1953).10.1103/PhysRev.87.835Google Scholar
19 Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley (New York, 1981), p. 115136 and p. 212–221.Google Scholar
20 Brammertz, G., Lin, H.-C., Martens, K., Mercier, D., Sioncke, S., Delabie, A., Wang, W. E., Caymax, M., Meuris, M., and Heyns, M., Appl. Phys. Lett. 93, 183504 (2008)10.1063/1.3005172Google Scholar
21It should be noted that the trap distribution can be here extracted in the upper half side of the semiconductor gap as only n-type substrate are taken into account, i.e. only electrons are exchanged with the interface trap levels.Google Scholar
22 Harrison, W. A., J. Vac. Sci. Technol. 16, 1492 (1979).10.1116/1.570229Google Scholar
23 Hinkle, C. L., Milojevic, M., Brennan, B., Sonnet, A. M., Aguirre-Tosatdo, F. S., Hughes, G. J., Vogel, E. M., and Wallace, R. M., Appl. Phys. Lett. 94, 162101 (2009).10.1063/1.3120546Google Scholar