Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T16:12:39.618Z Has data issue: false hasContentIssue false

Interface Morphology of RF-Sputtered NB/AL2O3 Multilayers Studied by X-Ray Reflectivity and Diffuse Scattering

Published online by Cambridge University Press:  21 February 2011

Tim Salditt
Affiliation:
Sektion Physik der Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
T. H. Metzger
Affiliation:
Sektion Physik der Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
J. Peisl
Affiliation:
Sektion Physik der Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
C. H. Morawe
Affiliation:
Institut für Experimentalphysik-Festkörperphysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
H. Zabel
Affiliation:
Institut für Experimentalphysik-Festkörperphysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
Get access

Abstract

We present measurements of specular and nonspecular x-ray scattering from interfacial roughness in ND/Al2O3 multilayers grown by rf-sputtering on a sapphire substrate at different Ar pressures. The rms-roughness of the interfaces is found to increase drastically if the Ar pessure is raised above a critical value corresponding to the thermalization of the impinging atoms. At the same time the height-height correlation function of the interfaces changes from a non-self-affine to a self-affine form. This result can be deduced from the structure factor of the diffuse scattering measured over a wide range in parallel momentum transfer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fullerton, E. E. et al., Phys. Rev. B 48, 17432 (1994).Google Scholar
[2] Steams, D. G., Rosen, R. S., Vernon, S. P., Appl. Optics 32, 6952 (1993).Google Scholar
[3] Vernon, S. P., Steams, D. G., Rosen, R. S., Appl. Optics 32, 6969 (1993).Google Scholar
[4] Morawe, Ch. et al., J. Mater. Res. 9, 570 (1994), andGoogle Scholar
Morawe, Ch. et al., sent to J. Appl. Phys.Google Scholar
[5] Payne, A. P., Clemens, B. M., Phys. Rev. B 47, 2289 (1993).Google Scholar
[6] Sinha, S. K. et al., Phys. Rev. B 38, 2297 (1988).Google Scholar
[7] Salditt, T., Metzger, T. H., Jiang, X., J. Phys. III (France) 4, 1573 (1994).Google Scholar
[8] Salditt, T., Metzger, T. H., Peisl, J., Phys. Rev. Lett. 73, 2228 (1994).Google Scholar
[9] Haubold, H.-G. et al., Rev. Sci. Instrum. 60, 1943 (1989).Google Scholar
[10] Salditt, T., Metzger, T. H., Peisl, J., Goerigk, G., proceedings of the 2nd European Symposium on Topography and High Resolution X-Ray Diffraction, Berlin 1994, to be published in J. Phys. D.Google Scholar
[11] Phang, Y. H. et al., J. Appl.Phys. 74, 3181 (1993), and references therein.Google Scholar
[12] Steams, D. G., Appl. Phys. Lett. 62, 1745 (1993).Google Scholar
[13] Savage, D. E. et al., J. Appl. Phys. 69, 1411 (1991).Google Scholar
[14] Weber, W., Lengeier, B., Phys. Rev. B 46, 7953 (1992).Google Scholar
[15] Palasantzas, G., Phys. Rev. B 48, 14472 (1993).Google Scholar
[16] Salditt, T. et. al., sent to Phys. Rev. B.Google Scholar