Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-04T20:04:01.707Z Has data issue: false hasContentIssue false

Interelectronic Exchange Interactions between Organic Radicals in the Solid State

Published online by Cambridge University Press:  25 February 2011

Frank C. Rossitto
Affiliation:
University of Massachusetts, Department of Chemistry, Amherst, MA 01003, USA
Paul M. Lahti
Affiliation:
University of Massachusetts, Department of Chemistry, Amherst, MA 01003, USA
Get access

Abstract

The poly(4'-vinylphenoxy) nonconjugated polyradical was generated by photolysis of an oxalate-functionalized poly(4-hydroxystyrene). Spin-counting experiments in the electron spin resonance spectrum (ESR) showed efficient production of radicals with g = 2.0041, consistent with the expected pendant phenoxyl radicals. The thermal behavior of the ESR signal intensity indicated through-space antiferromagnetic coupling of the pendant radicals. The similarity of the behavior of this nonconjugated system to that of nominally conjugated polyradical systems synthesized by others suggests that geometric effects leading to deconjugation may be a major consideration in the synthesis of organic ferromagnetically exchange coupled polyradicals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. C. f. the proceedings of the Symposium on Ferromagnetic and High-Spin Molecular Based Materials at the 197th American Chemical Society Meeting; Miller, J. S. and Dougherty, D. A., Eds., Mol. Cryst. Liq. Cryst., 176 1(1989) and references cited therein.Google Scholar
2. C. f. Gatteschi, D., Kahn, O., Miller, J. S., Palacio, F., Eds., Magnetic Molecular Materials, NATO ASI Series, (Kluwer, Dordrecht, The Netherlands, 1991).Google Scholar
3. Manriquez, J. M., Yee, G. T., Epstein, A. J., McLean, R. S., Miller, J. S., Science 252, 1415 (1991).Google Scholar
4. Mataga, N., Theor. Chim. Acta 10, 273 (1968).Google Scholar
5. Ovchinnikov, A. A., Theor. Chim. Acta 47, 297 (1978).Google Scholar
6. Klein, D. J. and Alexander, S. A., in Graph Theory and Topolopv in Chemistry, edited by King, R. B. and Rouvray, D. H., (Elsevier, Amsterdam, The Netherlands, 1987), p. 404.Google Scholar
7. Lahti, P. M., Ichimura, A. S., Berson, J. A., J. Org. Chem. 54, 958 (1989).Google Scholar
8. Lahti, P. M., Ichimura, A. S., Mol. Cryst. Liq. Cryst. 176, 125 (1989).Google Scholar
9. Lahti, P. M., Ichimura, A. S., J. Org. Chem. 56, 3030 (1991).Google Scholar
10. Fujita, I., Teki, Y., Takui, T., Kinoshita, T., Itoh, K., Iwamura, H., J. Am. Chem. Soc. 112, 4074(1990).Google Scholar
11. Abdelkader, M., Drenth, W., Meijer, E. W., Chem. Mater. 3, 598 (1991).Google Scholar
12. Fuji, A., Ishida, T., Koga, N., Iwamura, H., Macromol. 24, 1077 (1991).Google Scholar
13. Iwamura, H., Sasaki, S., Sasagawa, N., Inoue, K., Koga, N., in Magnetic Molecular Materials, edited by Gatteschi, D., Kahn, O., Miller, J. S., Palacio, F., (Kluwer, Dordrecht, The Netherlands, 1991) p. 53.Google Scholar
14. Nishide, H., Yoshioka, N., Inagaki, K., Tsuchida, E., Macromol. 21, 3120 (1988).Google Scholar
15. Nishide, H., Yoshioka, N., Kaneko, T., Tsuchida, E., Macromol. 23, 4487 (1990).Google Scholar
16. Yoshioka, N., Nishide, H., Tsuchida, E., Mol. Cryst. Liq. Cryst. 190, 45 (1990).Google Scholar
17. Modarelli, D. A., Rossitto, F. C, Lahti, P. M., Tet. Lett. 1989, 4477.Google Scholar
18. Modarelli, D. A. and Lahti, P. M., Chem. Comm. 1990, 1167.Google Scholar
19. Modarelli, D. A., Rossitto, F. C., Minato, M., Lahti, P. M., Mater. Res. Soc. Sympos. Proc. 173, 83 (1990).Google Scholar
20. Modarelli, D. A., Rossitto, F. C, Lahti, P. M., Tet. Lett., 1989, 4473.Google Scholar
21. C.f. for example Upasani, R. B., Chiang, L. Y., Goshorn, D. P., Mater. Res. Soc. Sympos. Proc. 173, 77 (1990).Google Scholar
22. Full details will be described in Rossitto, F. C, Lahti, P. M., J. Polym. Sci. A, Polym. Chem., 30, 0000 (1992) [in press].Google Scholar
23. A plot of (ESR intensity)−1 vs. T/K would yield a Weiss constant θ for these plots, but the numerical value for θ would be imprecise due to our lack of very low T measurements. However, θ is clearly negative for 4, consistent with antiferromagnetic interaction.Google Scholar
24. Yamaguchi, K., Nanimoto, H., Fueno, T., Mol. Cryst. Liq. Cryst. 176, 151 (1989).Google Scholar