Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:42:47.234Z Has data issue: false hasContentIssue false

Interdigital Ag(Ta,Nb)O3 thin Film Capacitors on Sapphire

Published online by Cambridge University Press:  17 March 2011

Jung-Hyuk Koh
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm-Kista, Sweden
Alex Grishin
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm-Kista, Sweden
Akira Shibuya
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
Masanori Okuyama
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
Get access

Abstract

Polycrystalline 0.4 μm thick films of Ag(Ta,Nb)O3 (ATN) were grown on sapphire (Al2O3-0112, r-plane) wafers by pulsed laser deposition technique. 2 and 4 μm gap interdigital capacitors were defined by photolithography on the top of Au/Cr/ATN(0.4μm)/Al2O3 film structures. They exhibit high dielectric performance. In the frequency range of 1 kHz to 1 MHz dielectric permittivity shows frequency dispersion as low as 3.5 %, loss tangent ∼ 0.0035 @ 1 MHz, Kfactor = tunability/tan δ is about 20.2 @ 200 kV/cm, and resistivity as high as 1.8 × 1011 ×cm @ 100 kV/cm. C-V and I-V characteristics recorded in time domain revealed slow Curie-von Schweidler-type relaxation of the polarization. Low frequency dispersion and loss, high tunability and low noise in the biased state promise thin ATN film capacitors for microwave applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chen, C.L., Feng, H.H., Zhang, Z., Brazdeikis, A., Huang, Z. J., Chu, W. K., Chu, C. W., Miranda, F. A., Keuls, F. W. Van, Romanofsky, R. R., Liou, Y., Appl. Phys. Lett. 75, 412 (1999).Google Scholar
[2] Im, J., Auciello, O., Baumann, P.K., Streiffer, S.K., Kaufman, D. Y., Krauss, A. R., Appl. Phys. Lett. 76, 625 (2000).Google Scholar
[3] Park, B.H., Gim, Y., Fan, Y., Jia, Q.X., Lu, P., Appl. Phys. Lett. 77, 2587 (2000).Google Scholar
[4] Li, Hong-Cheng, Si, Weidong, West, Alexander D., Xi, X.X., Appl. Phys. Lett. 73, 190 (1998).Google Scholar
[5] Wang, Xin, Helmersson, Ulf, Madson, Lynnette D., Ivanov, Ivan P., Munger, Peter, Ruder, Staffan, Hjorvarsson, B., Sundgren, Jan-Eric, J. Vac. Sci. Technol, A 17 (2), 564 (1999).Google Scholar
[6] Boikov, Yu. A., Ivanov, Z. G., Vasiliev, A. L., Pronin, I., Olsson, E., Claeson, T., Appl. Phys. Lett. 67, 2708 (1995).Google Scholar
[7] Abadei, S., Gevorgian, S., Cho, C.-R., Grishin, A., Andreasson, J., Lindbäck, T., Appl. Phys. Lett. 78, 1900 (2001).Google Scholar
[8] Koh, Jung-Hyuk, Khartsev, S. I., Grishin, Alex, Appl. Phys. Lett. 77, 4416 (2000).Google Scholar
[9] Koh, Jung-Hyuk, Grishin, Alex, Appl. Phys. Lett. 79, 2234 (2001).Google Scholar
[10] Koh, Jung-Hyuk, Grishin, Alex, 13 Intern. Symposium on Integrated Ferroelectrics, To appear in Integrated Ferroelectrics (2001).Google Scholar
[11] Gevorgian, Spartak S., Martinsson, Torsten, Linner, Peter L.J., Kollberg, Erik L., IEEE Trans. Microwave Theory Tech. 44, 896 (1996).Google Scholar
[12] Jonscher, A. K., Dielectric Relaxation in Solids (London: Chelsea Dielectrics Press, 1983).Google Scholar