Article contents
Intercalation Processes in Cobalt Substituted Nickel Oxyhydroxides
Published online by Cambridge University Press: 28 February 2011
Abstract
Chimie douce reactions (hydrolysis and reduction) from layered oxides : NaNiO2, NaxCoO2 and NaNil-xCoxO2 lead to numerous oxyhydroxides and hydroxides which differ by the composition of the intersheet space.
According to the experimental conditions of the hydrolysis reaction, the oxyhydroxides can be unhydrated or intercalated with one or two layers of water molecules. From the most hydrated phases, the other ones can be obtained by chemical, thermal and even mechanical treatment.
The reduction of Co-substituted nickel oxyhydroxides leads to hydroxides in which nickel and cobalt ions are respectively divalent and trivalent. In order to compensate the excess of positive charge in the (Ni, Co)O2 sheet, anions (OH-, CO32-, SO42-, NO3-) are inserted in the Van der Waals gap.
For the highest anion amounts, well ordered α*-type materials are obtained. Water molecules are simultaneously inserted in the interslab space. Their structure is strongly related to the hydrotalcite one. When the amouit of anions in the intersheet space is not sufficient, interstratified materials are obtained. In this case the (Ni,Co)(OH)2 slabs are separated by a layer of CO32- anions and water molecules (α*-type) or by an empty Van der Waals gap (β(II)-type). The amount of α*-type planes in the structure increases with the cobalt amount. All these materials have been characterized by IR spectroscopy which allows to detect the existence of two types of O-H bonds (free in α*-type plane or hydrogen bonded in ²(II)-type plane).
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1991
References
- 1
- Cited by