Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:51:08.309Z Has data issue: false hasContentIssue false

Intercalation Compounds: Covalent and Ionic Approach

Published online by Cambridge University Press:  21 February 2011

Paul Hagenmuller*
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Université de BORDEAUX I, 351 cours de la Libération, 33405 TALENCE Cedex, France
Get access

Abstract

In contrast with amphoteric graphite layer type oxides or chalcogenides play generally the role of acceptors in intercalation reactions. Due to the more ionic character of the M-0 bonds the structural evolution of the oxides may usually be explained on hand of electrostatic considerations, or in terms of cation oxido-reduction. On contrary for the more covalent chalcogenides occupancy of energy levels in the band structure by the transferred electrons constitute a determining factor, influencing strongly not only the structural changes but also the physical properties. Similar bonding considerations account for the strong tendency of the oxides to undergo 2D → 3D transformations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] DAUMAS, N. and HEROLD, A., C.R. Acad. Sc. 268, 373 (1971).Google Scholar
[2] DRESSELHAUS, M.S., Physics Today 37, 60 (1984).Google Scholar
[3] SILBERNAGEL, B.G., Sol. St. Comm. 17, 361 (1975).Google Scholar
[4] ROUXEL, J., Chemica Scripta 28, 33 (1988).Google Scholar
[5] DELMAS, C., BRACONNIER, J.J., FOUASSIER, C. and HAGENMULLER, P., Mat. Res. Bull. 3/4, 165 (1981).Google Scholar
[6] ROUXEL, J., DANOT, M. and PICHON, J., Bull. Soc. Chim. Fr. 3390 (1971).Google Scholar
[7] ROUXEL, J., Intercalated Layered Materials, Levy, F.A. ed. (Reidel Publ., 1979).Google Scholar
[8] FOUASSIER, C., DELMAS, C. and HAGENMULLER, P., Mat. Res. Bull. 10, 443 (1975).Google Scholar
[9] BLANC, A. LE, DANOT, M., TRICHET, L. and ROUXEL, J., Mat. Res. Bull. 9, 191 (1974).Google Scholar
[10] ROUXEL, J., J. Sol. St. Chem. 17, 223 (1976).Google Scholar
[11] FATSEAS, G.A., PALVADEAU, P. and VENIEN, J.P., J. Sol. St. Chem. 51, 17 (1984).Google Scholar
[12] LIANG, W.Y., Physics and Chemistry of Electrons and Ions in Condensed Matter, NATO ASI 130 (1984).Google Scholar
[13] NADIRI, A., Thèse de Doctorat ès sciences physiques, BORDEAUX I University, 1985.Google Scholar
[14] THOMPSON, A.H., Phys. Rev. Lett. 40, 1511 (1978).Google Scholar
[15] SCHOLLHORN, R., Angew. Chem. English ed. 19, 983 (1980).Google Scholar
[16] FOUASSIER, C., MATEJKA, G., REAU, J.M. and HAGENMULLER, P., J. Sol. St. Chem. 6, 532 (1973).Google Scholar
[17] DELMAS, C., FOUASSIER, C. and HAGENMULLER, P., Mat. Res. Bull. 11, 1483 (1976).Google Scholar
[18] MAAZAZ, A., DELMAS, C., FOUASSIER, C., REAU, J.M. and HAGENMULLER, P., Mat. Res. Bull. 14, 329 (1979).Google Scholar
[19] THOMAS, M.G., W.I. DAVID, GOODENOUGH, J.B. and GROVES, P., Mat. Res. Bull. 20, 1137 (1985).Google Scholar
[20] PICCIOTTO, L.A. DE and THACKERAY, m.M., Mat. Res. Bull. 20, 187 (1985), Sol. St. Ionics 18/19, 773 (1986).Google Scholar
[21] MAAZAZ, A., DELMAS, C. and HAGENMULLER, P., J. Incl. Phenom. 1, 45 (1983).Google Scholar
[22] MAAZAZ, A. and DELMAS, C., C.R. Acad. Sc. 295, 759 (1982).Google Scholar
[23] BRUCE, W.I., M.M. THACKERAY, BRUCE, P.G. and GOODENOUGH, J.B., Mater. Res. Bull. 19, 99 (1984).Google Scholar
[24] DOUMERC, J.P., AMMAR, A., WICHAINCHAI, A., POUCHARD, M. et HAGENMULLER, P., J. Phys. Chem. Solids 48, 37 (1987).Google Scholar