Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:36:39.454Z Has data issue: false hasContentIssue false

Interatomic Forces and Structure of Grain Boundaries

Published online by Cambridge University Press:  25 February 2011

V. Vitek
Affiliation:
Department of Applied Physics, Materials Science Centre, University of Groningen, Nijenborgh 18, 9747 AG Groningen, The Netherlands
J. Th. M. de Hosson
Affiliation:
Department of Applied Physics, Materials Science Centre, University of Groningen, Nijenborgh 18, 9747 AG Groningen, The Netherlands
Get access

Abstract

Over the past two decades, grain boundary structures have been investigated, with increasing frequency, using computer simulation techniques. The accuracy of the potentials used to describe the interaction between atoms is essential to the success of any computer modelling and practically all these studies have been made assuming that the atoms exert pair-wise forces on each other. This paper discusses the applicability and limitations of this assumption and the validity and applicability of the simulation results obtained with pair-potentials. First, it is shown that certain structural features of grain boundaries are independent of the potential used. Such results form, for example, the basis of the structural unit model which relates the structures of boundaries corresponding to different misorientations. Secondly, the multiplicity of boundary structures and its physical implications are discussed. In particular, we report on the complexities of the structure of Σ=5 [001] twist boundaries and on alternative structures of [111] twist boundaries near the Σ=3 twin orientation, both found by computer modelling. These results, which are of general nature, are compared with experimental observations by X-ray diffraction and transmission electron microscopy and a very good agreement is found. However, exact positions of atoms in calculated structures depend on the potential used. Hence, to study properties sensitively dependent on these positions requires to go beyond the pair-potentials.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mc Lean, D., Grain Boundaries in Metals (University Press, Oxford, 1957).Google Scholar
[2] Balluffi, R. W., Met. Trans. A13, 2069 (1982).Google Scholar
[3] Sutton, A. P., Int. Metals Reviews 29, 377 (1984).Google Scholar
[4] Milkove, K. R., Lamarre, P., Schmückle, F., Vaudin, M. D. and Sass, S. L., J. Physique 46, C4 (1985).Google Scholar
[5] Bourret, A., J. Physique 46, C427 (1985).Google Scholar
[6] Ichinose, H. and Ishida, Y., J. Physique 46, C439 (1985).Google Scholar
[7] Frank, F. C., in Symp. on the Plastic Deformation of Crystalline Solids (Office of Naval Research, 1950), p. 150.Google Scholar
[8] Brandon, D. G., Ralph, B., Ranganathan, S. and Wold, M. S., Acta Metall. 12, 813 (1964).CrossRefGoogle Scholar
[9] Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1970).CrossRefGoogle Scholar
[10] Pond, R. C. and Vlachavas, D. S., Proc. Roy. Soc. A385, 95 (1983).Google Scholar
[11] Vitek, V., Sutton, A. P., Smith, D. A. and Pond, R. C., in Grain Boundary Structure and Kinetics (American Society Metals, Metals Park, Ohio, 1980), p. 115.Google Scholar
[12] Vitek, V., in Dislocations 1984, eds. Veyssière, P., Kubin, L. and Castaign, J. (CNRS Press, Paris, 1984), p. 435.Google Scholar
[13] Sutton, A. P. and Vitek, V., Phil. Trans. Roy. Soc. London A309, 37 (1983).Google Scholar
[14] Wang, G.-J., Vitek, V. and Sutton, A. P., Acta Metall. 32, 1093 (1984).Google Scholar
[15] Harrison, W. A., Pseudopotentials in The Theory of Metals (Benjamin/Cummings, Menlo Park, CA, 1966).Google Scholar
[16] Taylor, R., in Interatomic Potentials and Crystalline Defects, ed. Lee, J. K. (TMS AIME, Warrendale, PA, 1981), p. 115.Google Scholar
[17] Carlsson, A. E. and Ashcroft, N. W., Phys. Rev. B 27, 2101 (1983).Google Scholar
[18] Carlsson, A. E., Phys. Rev. B32, to be published (1985).Google Scholar
[19] Duesberry, M. S., Jacucci, G. and Taylor, R., J. Phys. F (Metal Phys.) 9, 413 (1979).Google Scholar
[20] Pettifor, D. G. and Ward, M. A., Solid State Comm. 49, 291 (1984).CrossRefGoogle Scholar
[21] Vitek, V. and Minonishi, Y., Surface Sci. 144, 196 (1984).CrossRefGoogle Scholar
[22] Dagens, L., Rasolt, M. and Taylor, R., Phys. Rev. B11, 2726 (1975).Google Scholar
[23] Crocker, A. G., Doneghan, M. and Ingle, K. W., Phil. Mag. A41, 21 (1980).Google Scholar
[24] Finnis, M. W., J. Phys. F (Metal Phys.) 4, 1645 (1974).Google Scholar
[25] Sutton, A. P. and Vitek, V., Acta Metall. 30, 2011 (1982).CrossRefGoogle Scholar
[26] Finnis, M. W. and Sinclair, J., Phil. Mag. A50, 45 (1984).Google Scholar
[27] Daw, M. S. and Baskes, M. I., Phys. Rev. B29, 6443 (1984).CrossRefGoogle Scholar
[28] Wang, G.-J., Sutton, A. P. and Vitek, V., Acta Metall. 32, 1093 (1984).Google Scholar
[29] Bristowe, P. D. and Baluffi, R. W., J. Physique 46, C4155 (1985).Google Scholar
[30] Schwartz, D., Vitek, V. and Sutton, A. P., Phil. Mag. A51, 499 (1985).Google Scholar
[31] Bishop, G. H. and Chalmers, B., Scripta Metall. 2, 133 (1968), Phil. Mag. 29, 515 (1971).Google Scholar
[32] Scott, R. F. and Goodhew, P. J., Phil. Mag. A44, 373 (1981).Google Scholar
[33] Wolf, D., Acta Metall. 32, 245 (1984); Acta Metall. 32, 735 (1984).Google Scholar
[34] Hasson, G., Boos, J.-Y., Herbeuval, I., Biscondi, M. and Goux, G., Surf. Sci. 31, 115 (1970).Google Scholar
[35] Pond, R. C. and Vitek, V., Proc. Roy. Soc. London, A357, 453 (1977).Google Scholar
[36] Bristowe, P. D. and Crocker, A. G., Phil. Mag. A 38, 487 (1978).Google Scholar
[37] Vitek, V., Minonishi, Y. and Wang, G.-J., J. Physique 46, C4171 (1985).Google Scholar
[38] Hart, E. W., in Nature of Behaviour of Grain Boundaries, ed. Hu, Hsun (Plenum Press, New York, 1972), p. 155.Google Scholar
[39] Aust, K. T., Can. Metall. Quart. 8, 155 (1972).Google Scholar
[40] Watanabe, T., Kimura, S.-I. and Karashima, S., Phil. Mag. 44, 845 (1984).Google Scholar
[41] Kikuchi, R. and Cahn, J. W., Phys. Rev. B21, 1893 (1980).Google Scholar
[42] Kalonji, G., Deymier, P., Najafabadi, R. and Yip, S., Surface Science 144, 77 (1984).Google Scholar
[43] Chan, Sin-Wan, Lin, J. S. and Balluffi, R. W., Scripta Metall. 19, 1251 (1985).Google Scholar
[44] Balluffi, R. W., Sass, S. L. and Schober, T., Phil. Mag. 26, 585 (1972).Google Scholar
[45] Budai, J., Bristowe, P. D. and Sass, S. L., Acta Metall. 31, 699 (1983).Google Scholar
[46] Oh, Yoonsik and Vitek, V., to be published (1986).Google Scholar
[47] Budai, J., Donald, A. M. and Sass, S. L., Scripta Metall. 16, 393 (1982).Google Scholar
[48] Hamelink, J. J. C. and Schapink, F. W., Phil. Mag. A44, 1229 (1981).Google Scholar
[49] De Hosson, J. Th. M., Schapink, F. W., Heringa, J. R., J. J. C. Hamelink, Acta Metall. 33 (1985) in press.Google Scholar
[50] Wang, G.-J. and Vitek, V., Acta Metall., in press (1986).Google Scholar
[51] Schapink, F. W., Forghany, S. K. E. and Buxton, B. F., Acta Cryst. A39, 805 (1983).Google Scholar
[52] De Hosson, J. Th. M., Heringa, J., Schapink, F. W., Evans, J. H. and van Veen, A., Surface Science 144, 1 (1984).Google Scholar
[53] Schwartz, D., Ph. D. Thesis, University of Pennsylvania (1985).Google Scholar